3S
  • Portfolio Top
  • Categories
  • Tags
  • Archives

シミュレーション実習 Day3

シミュレーション実習¶

Day.3: 生化学反応系の数理モデル

  • 担当:黒田研究室
  • 実習のwiki:Slides and programs

概要¶

  1. Introduction
  2. 細胞運命決定機構とRas, Rap1
  3. パラメタ推定
  4. 最適化
  5. 課題

1. Introduction

  • そもそも、なぜモデルを作るのか?
    • 現象を定量的に理解するため。(観測データの再現には、どのパラメータが重要?)
    • 現象を予測するため。(面白い現象を見るには、どんな実験条件が適切?)
    • 実験で確かめるのが困難なことを知りたいから。(コスト・技術・倫理などの問題で、そもそも実験できないことを知りたい)
  • 構造は既知とする。パラメータはどうやって決める?
    • 文献・データベースを参照(→実験条件がバラバラ。使って大丈夫?)
    • 実験的に測る(→手間がかかる。そもそも測定できる?)
    • 再現したい現象とモデルに依存して決める。
今日のテーマ

シグナル分子活性の経時変化のデータから、生化学反応の速度パラメータを推定する。

2. 細胞運命決定機構とRas, Rap1

  • システム生物学の講義参照。
    • ERKの時間波形が異なるだけで、異なる現象(増殖/分化)を制御
    • 複雑なモデルをシンプルに記述する。(ERKの一過性活性化はRas(のみ)に、持続性活性化はRap1(のみ)に依存している。)

3. パラメータ推定

  • パラメータの決め方
    1. 事象をうまく説明するモデルを作りたい。
    2. 客観的かつ定量的な指標(評価関数)を定義(ex.残差二乗和)
    3. 最適化

4. 最適化

  • 勾配(微分)を用いた最適化:局所的な最適化に向いている。収束性や収束速度なども理論が進んでいる。
    • 最急降下法
    • 共役勾配法
    • ニュートン法
    • 信頼領域法
    • など
  • 確率を用いた最適化:大域的な最適化に向いている。ただし、得られた解の最適性は保証されない。
    • Nelder-Mead法
    • シミュレーテッドアニーリング(SA)
    • タブー探索
    • 遺伝的アルゴリズム(GA)
    • 進化的プログラミング(EP)
    • 粒子群最適化(PSO)
    • など

5. 課題

In [1]:
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from scipy.io import loadmat

課題1:Ras, Rap1のODEモデルを作成¶

  • Rap1モデルの $\mathrm{S},\mathrm{GEF_a}, \mathrm{GAP_a}, \mathrm{Rap1_a}$ の常微分方程式 (ODE) を記述せよ。
  • Rasモデルの $\mathrm{S}, \mathrm{GEF_a}, \mathrm{GAP_a}$ RasaのODEを記述せよ。

  • ※ 上の図では触媒を $\mathrm{pR}$ と記述しているが、以下では $\mathrm{S}$ と記述する。
  • また、適当に反応速度定数 $k_i$ を定義している。(見れば対応関係はすぐに掴めるはず。)
  • 不活性型 $\mathrm{hoge_i}$ と活性型 $\mathrm{hoge_a}$ の総和は保存されていると考える(簡単のため、$\mathrm{hoge_i} + \mathrm{hoge_a} = 1$ とおいている。)

Rap1モデル¶

$$ \begin{aligned} \frac{d\mathrm{S}}{dt} &= 0\\ \frac{d\mathrm{GEF_a}}{dt} &= k_1\left[\mathrm{S}\right]\left[\mathrm{GEF_i}\right] - k_2\left[\mathrm{GEF_a}\right]\\ &=k_1\left[\mathrm{S}\right]\left(1-\left[\mathrm{GEF_a}\right]\right) - k_2\left[\mathrm{GEF_a}\right]\\ \frac{d\mathrm{GAP_a}}{dt} &= 0\\ \frac{d\mathrm{Rap1_a}}{dt} &= k_3\left[\mathrm{GEF_a}\right]\left[\mathrm{Rap1_i}\right] - k_4\left[\mathrm{GAP_a}\right]\left[\mathrm{Rap1_a}\right]\\ &= k_3\left[\mathrm{GEF_a}\right]\left(1-\left[\mathrm{Rap1_a}\right]\right) - k_4\left[\mathrm{GAP_a}\right]\left[\mathrm{Rap1_a}\right] \end{aligned} $$

モデルを関数化¶

In [2]:
# Rap model の微分方程式
def Rap1ODE(S,GEFa,GAPa,Rap1a,k1,k2,k3,k4,dt):
    dS     = 0 * dt
    dGEFa  = (k1*S*(1-GEFa) - k2*GEFa) * dt
    dGAPa  = 0 * dt
    dRap1a = (k3*(1-Rap1a)*GEFa - k4*Rap1a*GAPa) * dt
    return S+dS,GEFa+dGEFa,GAPa+dGAPa,Rap1a+dRap1a
In [3]:
def Rap1model(params,dt=0.01,min_t=0,max_t=100,
              S=1,GEFa=0,GAPa=0.005,Rap1a=0,both=False):
    max_t+=dt
    k1,k2,k3,k4=params
    time = np.arange(min_t,max_t,dt) 
    Rap1a_vals = np.zeros(len(time))
    Gefa_vals  = np.zeros(len(time))
    for i,t in enumerate(time):
        S,GEFa,GAPa,Rap1a = Rap1ODE(S,GEFa,GAPa,Rap1a,k1,k2,k3,k4,dt)        
        Rap1a_vals[i] = Rap1a
        Gefa_vals[i] = GEFa
    if both: return time, Rap1a_vals, Gefa_vals
    return time, Rap1a_vals

適当なパラメタでシミュレーション¶

In [4]:
rap_params=[0.5,0.5,0.2,10]
In [5]:
time,Rap1_vals = Rap1model(params=rap_params)
In [6]:
plt.plot(time,Rap1_vals)
plt.title("Simple Rap1 model simulation")
plt.xlabel("time")
plt.ylabel("conc.")
plt.show()

Rasモデル¶

$$ \begin{aligned} \frac{d\mathrm{S}}{dt} &= 0\\ \frac{d\mathrm{GEF_a}}{dt} &= k_1\left[\mathrm{S}\right]\left[\mathrm{GEF_i}\right] - k_2\left[\mathrm{GEF_a}\right]\\ &=k_1\left[\mathrm{S}\right]\left(1-\left[\mathrm{GEF_a}\right]\right) - k_2\left[\mathrm{GEF_a}\right]\\ \frac{d\mathrm{GAP_a}}{dt} &= k_3\left[\mathrm{S}\right]\left[\mathrm{GAP_i}\right] - k_4\left[\mathrm{GAP_a}\right]\\ &= k_3\left[\mathrm{S}\right]\left(1-\left[\mathrm{GAP_a}\right]\right) - k_4\left[\mathrm{GAP_a}\right]\\ \frac{d\mathrm{Ras_a}}{dt} &= k_5\left[\mathrm{GEF_a}\right]\left[\mathrm{Ras_i}\right] - k_6\left[\mathrm{GAP_a}\right]\left[\mathrm{Ras_a}\right]\\ &= k_5\left[\mathrm{GEF_a}\right]\left(1-\left[\mathrm{Ras_a}\right]\right) - k_6\left[\mathrm{GAP_a}\right]\left[\mathrm{Ras_a}\right] \end{aligned} $$

モデルを関数化¶

In [7]:
# Ras model の微分方程式
def RasODE(S,GEFa,GAPa,Rasa,k1,k2,k3,k4,k5,k6,dt):
    dS    = 0 * dt
    dGEFa = (k1*S*(1-GEFa) - k2*GEFa) * dt
    dGAPa = (k3*S*(1-GAPa) - k4*GAPa) * dt
    dRasa = (k5*GEFa*(1-Rasa) - k6*GAPa*Rasa) * dt
    return S+dS,GEFa+dGEFa,GAPa+dGAPa,Rasa+dRasa
In [8]:
def Rasmodel(params,dt=0.01,min_t=0,max_t=100,
             S=1,GEFa=0,GAPa=0,Rasa=0,both=False):
    max_t+=dt
    k1,k2,k3,k4,k5,k6=params
    time = np.arange(min_t,max_t,dt) 
    Rasa_vals = np.zeros(len(time))
    GEFa_vals = np.zeros(len(time))
    for i,t in enumerate(time):
        S,GEFa,GAPa,Rasa = RasODE(S,GEFa,GAPa,Rasa,k1,k2,k3,k4,k5,k6,dt)
        Rasa_vals[i] = Rasa
        GEFa_vals[i] = GEFa
    if both: return time, Rasa_vals, GEFa_vals
    return time, Rasa_vals

適当なパラメタでシミュレーション¶

In [9]:
ras_params = [0.5,5,0.0005,0.005,0.05,100]
In [10]:
time,Rasa_vals = Rasmodel(ras_params)
In [11]:
plt.plot(time, Rasa_vals)
plt.title("Simple Ras model simulation")
plt.xlabel("time")
plt.ylabel("conc.")
plt.show()

課題2:1つ or 2つの未知パラメータを推定¶

  1. 最小二乗法に基づき、$\mathrm{Rap1}$ モデルのパラメータ $k_4$ を手で推定せよ。(省略)
  2. 最小二乗法に基づき、$\mathrm{Rap1}$ モデルのパラメータ $k_4$ を自動で推定せよ。
  3. 最小二乗法に基づき、$\mathrm{Rap1}$ モデルのパラメータ $k_2,k_4$ を自動で推定せよ。

課題2.2¶

$k4$ の候補を総なめし、最も値が良かったものを採用する、という方法をとる。

データの読み込み¶

In [12]:
train_data_kadai2_2 = loadmat("data_Rap1_1para.mat")
In [13]:
train_t_kadai2_2 = train_data_kadai2_2["t"].ravel()
train_x_kadai2_2 = train_data_kadai2_2["x"].ravel()

評価関数(RSS)の定義¶

In [14]:
def CalRap1RSS(train_t, train_x, params,
               dt=0.1, min_t=0, max_t=100,
               S=1,GEFa=0,GAPa=0.005,Rap1a=0):
    max_t+=dt
    k1,k2,k3,k4=params
    time = np.arange(min_t,max_t,dt)
    timing = train_t/dt
    rss=0
    for i,t in enumerate(time):
        S,GEFa,GAPa,Rap1a = Rap1ODE(S,GEFa,GAPa,Rap1a,k1,k2,k3,k4,dt)
        if GEFa>100: return 1e10
        if i in timing:
            rss += (train_x[np.argmax(timing==i)]-Rap1a)**2
    return rss

パラメタを変化させて評価関数を最適化¶

In [15]:
k1=0.5
k2=0.5
k3=0.2
In [16]:
k4range = np.arange(0.1,10.05,0.05)
In [17]:
params_kadai2_2 = [[k1,k2,k3,k4] for k4 in k4range]
In [18]:
RSS_kadai2_2 = [
    CalRap1RSS(
        train_t_kadai2_2,
        train_x_kadai2_2,
        param_kadai2_2,
        dt=1
    ) for param_kadai2_2 in params_kadai2_2
]
In [19]:
opt_id_kadai2_2  = np.argmin(RSS_kadai2_2)
opt_k4_kadai2_2  = k4range[opt_id_kadai2_2]
opt_RSS_kadai2_2 = RSS_kadai2_2[opt_id_kadai2_2]
In [20]:
plt.plot(k4range, RSS_kadai2_2)
plt.scatter(opt_k4_kadai2_2, opt_RSS_kadai2_2, label="optimized k4", s=300, marker="*", color="red")
plt.text(opt_k4_kadai2_2+1, opt_RSS_kadai2_2, "optimized k4={:.2f}".format(opt_k4_kadai2_2))
plt.title("The relationship between $k_4$ and RSS")
plt.xlabel("$k_4$")
plt.ylabel("RSS")
plt.legend()
plt.show()

最適なパラメタでシミュレーション¶

In [21]:
min_param_kadai2_2 = params_kadai2_2[opt_id_kadai2_2]
In [22]:
time,Rap1_vals = Rap1model(params=min_param_kadai2_2)
In [23]:
plt.plot(time, Rap1_vals)
plt.scatter(train_t_kadai2_2, train_x_kadai2_2, label="data")
plt.title("The best $k_4$ with sample data")
plt.xlabel("time")
plt.ylabel("conc.")
plt.legend()
plt.show()

課題2.3¶

$k2, k4$ の候補を総なめし、最も値が良かったものを採用する、という方法をとる。なお、値が収束するまで繰り返すことはしない。

データの読み込み¶

In [24]:
train_data_kadai2_3 = loadmat("data_Rap1_2para.mat")
In [25]:
train_t_kadai2_3 = train_data_kadai2_3["t"].ravel()
train_x_kadai2_3 = train_data_kadai2_3["x"].ravel()

パラメタを変化させて評価関数を最適化¶

In [26]:
k1 = 0.5
k3 = 0.2
In [27]:
k2range = np.arange(0.1,3.05,0.05)
k4range = np.arange(0.1,3.05,0.05)
In [28]:
params_kadai2_3 = [[k1,k2,k3,k4] for k4 in k4range for k2 in k2range]
In [29]:
RSS_kadai2_3 = [
    CalRap1RSS(
        train_t_kadai2_3,
        train_x_kadai2_3,
        param_kadai2_3,
        dt=0.1
    ) for param_kadai2_3 in params_kadai2_3
]
In [30]:
RSS_kadai2_3 = np.array(RSS_kadai2_3).reshape(len(k2range),len(k4range))
In [31]:
opt_k2_index, opt_k4_index = np.unravel_index(np.argmin(RSS_kadai2_3), RSS_kadai2_3.shape)
optk2 = k2range[opt_k2_index]
optk4 = k4range[opt_k4_index]
optRSS = RSS_kadai2_3[opt_k2_index][opt_k4_index]
In [32]:
X, Y = np.meshgrid(k2range, k4range)
In [33]:
fig = plt.figure()
ax = Axes3D(fig)
ax.set_xlabel("$k_2$")
ax.set_ylabel("$k_4$")
ax.set_zlabel("RSS")
ax.plot_wireframe(X, Y, RSS_kadai2_3)
ax.scatter3D(optk2,optk4,optRSS, s=300, marker="*", color="red")
ax.set_title("The relationship between RSS and $k_2$ and $k_4$")
ax.text3D(optk2,optk4-1,optRSS,"optimized k2={:.2f}, k4={:.2f}".format(optk2,optk4))
plt.show()

最適なパラメタでシミュレーション¶

In [34]:
min_param_kadai2_3 = params_kadai2_3[np.argmin(RSS_kadai2_3)]
In [35]:
time,Rap1_vals = Rap1model(params=min_param_kadai2_3, dt=0.1)
In [36]:
plt.plot(time, Rap1_vals)
plt.scatter(train_t_kadai2_2, train_x_kadai2_2, label="data")
plt.title("The best k4 with sample data")
plt.xlabel("time")
plt.ylabel("conc.")
plt.legend()
plt.show()

課題3:4つの未知パラメータをEPで推定¶

  1. 最小二乗法に基づき、$\mathrm{Rap1}$ モデルのパラメータ $k_1,k_2,k_3,k_4$ を手で推定せよ。(省略)
  2. 最小二乗法に基づき、$\mathrm{Rap1}$ モデルのパラメータ $k_4$ をEPで推定せよ。

EP(Evolutionary programming)¶

  1. 乱数を初期値として,$N$ 個の個体(解の候補)を生成する。
  2. 個体のそれぞれのコピーをつくる。
  3. 2.で作った各コピーに正規乱数を加える。(変異)
  4. 3.の操作で作られた新しい $N$ 個の個体と、元の個体を混ぜた $2N$ 個の各個体に対してスコアを求める。スコアは以下のように決める。
    • a)スコアを決める対象の個体を除いて、2N個体の集団から無作為に $q$ 個体を選ぶ。
    • b)選んだ $q$ 個体のうち,スコアを決める対象の個体より評価関数の値(RSSなど)が悪い個体(最小二乗法の場合は,対象の個体よりRSSの値が大きい個体)の数をその個体のスコアとする。
  5. スコアの下位 $N$ 個の個体を削除する。(淘汰)
  6. 終了条件を満たすまで 2~5(1世代に相当)の操作を繰り返す。
  7. 残った中で最も評価関数の値が良い個体を"解"とする。

データの読み込み¶

In [37]:
data = loadmat("data_Rap1_4para.mat")
ts = data["t"]
xs = data["x"]
_, train_GEFa, _, train_Rap1a = xs.T
In [38]:
train_data_kadai3 = loadmat("data_Rap1_4para.mat")
In [39]:
train_t_kadai3 = train_data_kadai3["t"].ravel()
train_x_kadai3 = train_data_kadai3["x"]
In [40]:
print("訓練データの中身\n{}".format(train_x_kadai3))
訓練データの中身
[[ 1.         -0.0357536   0.005      -0.0056963 ]
 [ 1.          0.36819643  0.005       0.10095294]
 [ 1.          0.66759354  0.005       0.2071867 ]
 [ 1.          0.73270475  0.005       0.09725977]
 [ 1.          0.73190286  0.005       0.31347316]
 [ 1.          0.77473891  0.005       0.24705392]
 [ 1.          0.85039398  0.005       0.122791  ]
 [ 1.          0.88061703  0.005       0.24832706]
 [ 1.          0.65714803  0.005       0.27593028]
 [ 1.          0.89573351  0.005       0.38094011]
 [ 1.          0.71809156  0.005       0.30350939]]
In [41]:
_, train_GEFa, _, train_Rap1a = train_x_kadai3.T
In [42]:
print("GEFa:\n{}".format(train_GEFa))
print("Rap1a:\n{}".format(train_Rap1a))
GEFa:
[-0.0357536   0.36819643  0.66759354  0.73270475  0.73190286  0.77473891
  0.85039398  0.88061703  0.65714803  0.89573351  0.71809156]
Rap1a:
[-0.0056963   0.10095294  0.2071867   0.09725977  0.31347316  0.24705392
  0.122791    0.24832706  0.27593028  0.38094011  0.30350939]

諸々の関数定義¶

In [43]:
# 摂動(dt)が大きいと、パラメータの値によっては急激な変化によってうまくシミュレーションができないことがある。
# そこで、濃度があまりにも大きい(or負の数になった)時には大きなペナルティを与える。
# そうすることでdtを比較的大きな値に設定することができるので、短時間で学習が行える。
def AvoidOverFlow(values,minv=0,maxv=1e3):
    return sum([v<minv or maxv<v for v in values])
In [44]:
def CalRap1RSS_both(train_t, train_GEFa, train_Rap1a, params,
                    dt=0.01, min_t=0, max_t=100, maxrss=1e5,
                    S=1,GEFa=0,GAPa=0.005,Rap1a=0):
    max_t+=dt
    k1,k2,k3,k4=params
    time = np.arange(min_t,max_t,dt)
    timing = train_t/dt
    rss=0
    for i,t in enumerate(time):
        S,GEFa,GAPa,Rap1a = Rap1ODE(S,GEFa,GAPa,Rap1a,k1,k2,k3,k4,dt)
        if AvoidOverFlow([S,GEFa,GAPa,Rap1a]): return maxrss
        if i in timing:
            index = np.argmax(timing==i)
            rss += (train_Rap1a[index]-Rap1a)**2 + (train_GEFa[index]-GEFa)**2
    return rss
In [45]:
def plotSimulate(ax1,ax2,param):
    time,Rap1a_vals,Gefa_vals = Rap1model(param,both=True)
    ax1.plot(time, Gefa_vals, color="red", alpha=0.5)
    ax2.plot(time, Rap1a_vals, color="red", alpha=0.5)
    return ax1,ax2
In [46]:
def plotRSS(ax3,ax4,generations,best_rss,mean_rss):
    ax3.plot(generations, best_rss, color="blue", alpha=0.5)
    ax4.plot(generations, mean_rss, color="blue", alpha=0.5)
    return ax3,ax4
In [47]:
def plotInfo(train_t, train_GEFa, train_Rap1a, figsize=(12,8)):
    fig = plt.figure(figsize=figsize)
    
    ax1=fig.add_subplot(2,2,1)
    ax1.set_xlabel("time")
    ax1.set_title("GEFa")
    ax1.scatter(train_t, train_GEFa, label="train data")
    ax1.legend()
    
    ax2 = fig.add_subplot(2,2,2)
    ax2.set_xlabel("time")
    ax2.set_title("Rap1")
    ax2.scatter(train_t, train_Rap1a, label="train data")
    ax2.legend()
    
    ax3 = fig.add_subplot(2,2,3)
    ax3.set_xlabel("generation")
    ax3.set_ylabel("RSS")
    ax3.set_title("The Best individual")
    ax3.set_ylim(0,1.5)
    
    ax4 = fig.add_subplot(2,2,4)
    ax4.set_xlabel("generation")
    ax4.set_ylabel("RSS")
    ax4.set_title("The Mean of individuals")
    ax4.set_ylim(0,6)
    
    return ax1,ax2,ax3,ax4
In [48]:
import datetime
def now():
    return datetime.datetime.now().strftime("%Y/%m/%d %H:%M:%S")

パラメタ定義¶

In [49]:
np.random.seed(2019) # シード固定(→再現性)
In [50]:
numGeneration = 250
ITERTION_COUNT = 10
In [51]:
K=4 # パラメタ数
N=100 # 一世代の個体数
indexes = np.array([i for i in range(N*2)]) # 各個体のインデックス
In [52]:
lb = 1e-3; ub = 1e2 # 初期パラメータの範囲
sigma_scale=0.1; # 正規乱数の分散パラメータ
In [53]:
rate=0.7 # スコア算出時に何割の個体と値を比べるか
q = int(N*2*rate)

EP実装¶

In [54]:
print("[START] {}".format(now()))
print("[PARAM] Iteration={}, numGeneration={}, numIndividual={}".format(ITERTION_COUNT, numGeneration,N))
ax1,ax2,ax3,ax4 = plotInfo(train_t_kadai3, train_GEFa, train_Rap1a)

for it in range(ITERTION_COUNT):
    print("="*60)
    params = np.random.uniform(lb,ub,(N,K)) # 初期パラメータ
    
    best_rss = np.zeros(numGeneration+1) # 各世代の最も良い個体の値を格納
    mean_rss = np.zeros(numGeneration+1) # 各世代の平均値を格納
    generations = [i for i in range(numGeneration+1)] 
    
    for gen in range(numGeneration+1):
        # NOTE:以下の値で新しいパラメタを設定する。
        # 平均: 元のパラメタ
        # 分散: sigma_scale × 元のパラメータ
        new_params = np.random.normal(loc=params, scale=params*sigma_scale)
        #=== パラメタを[lb,ub]の範囲に入れる ===
        new_params = np.where(new_params>lb, new_params, lb)
        new_params = np.where(new_params<ub, new_params, ub)
        
        all_params = np.r_[params,new_params]
        RSSs = np.array([CalRap1RSS_both(train_t_kadai3, train_GEFa, train_Rap1a, param, dt=0.1) for param in all_params])
        
        best_rss[gen] = np.min(RSSs)
        mean_rss[gen] = np.mean(RSSs)
        
        scores = np.zeros(2*N)
        for i in range(2*N):
            rss = RSSs[i] # 今考えている個体のRSS
            selected = np.random.choice(indexes[indexes!=i], q) # 考えている個体以外からq個体をランダムチョイス
            selected_scores = RSSs[selected] # それらの個体のRSS
            score = np.count_nonzero(selected_scores > rss) # 考えている個体よりもRSSが悪い(=大きい)個体の数
            scores[i] = score # 記録

        params = all_params[np.argsort(scores)[N:]] # スコアの良い半分を次の世代に残す。
        best_params = all_params[np.argmax(scores)]
        
        if gen%10==0:
            k1,k2,k3,k4 = best_params
            print("[{:02} | Gene{:03}] {}".format(it,gen,now()))
            print("- best RSS: {:.5f} / k1={:.2f}, k2={:.2f}, k3={:.2f}, k4={:.2f}".format(best_rss[gen],k1,k2,k3,k4))
            print("- mean RSS: {:.5f}".format(mean_rss[gen]))
            print("-"*60)

    ax1,ax2 = plotSimulate(ax1,ax2,best_params)
    ax3,ax4 = plotRSS(ax3,ax4,generations,best_rss,mean_rss)
    
plt.tight_layout()
plt.show()
[START] 2019/07/11 17:26:47
[PARAM] Iteration=10, numGeneration=250, numIndividual=100
============================================================
[00 | Gene000] 2019/07/11 17:26:48
- best RSS: 8.21291 / k1=5.23, k2=11.61, k3=52.07, k4=13.17
- mean RSS: 99500.04106
------------------------------------------------------------
[00 | Gene010] 2019/07/11 17:27:02
- best RSS: 3.75842 / k1=5.91, k2=10.24, k3=54.44, k4=13.26
- mean RSS: 9507.21482
------------------------------------------------------------
[00 | Gene020] 2019/07/11 17:27:38
- best RSS: 1.29245 / k1=5.76, k2=3.08, k3=30.34, k4=12.65
- mean RSS: 5506.48367
------------------------------------------------------------
[00 | Gene030] 2019/07/11 17:28:20
- best RSS: 1.04094 / k1=5.34, k2=4.35, k3=36.15, k4=13.36
- mean RSS: 2506.17228
------------------------------------------------------------
[00 | Gene040] 2019/07/11 17:28:57
- best RSS: 1.04094 / k1=5.19, k2=3.17, k3=32.07, k4=14.00
- mean RSS: 2505.95626
------------------------------------------------------------
[00 | Gene050] 2019/07/11 17:29:32
- best RSS: 1.04094 / k1=5.83, k2=2.37, k3=28.04, k4=7.19
- mean RSS: 4505.54205
------------------------------------------------------------
[00 | Gene060] 2019/07/11 17:30:13
- best RSS: 1.04094 / k1=2.08, k2=1.45, k3=2.61, k4=56.74
- mean RSS: 2504.81674
------------------------------------------------------------
[00 | Gene070] 2019/07/11 17:30:54
- best RSS: 1.04094 / k1=5.73, k2=2.13, k3=27.40, k4=6.75
- mean RSS: 2002.89699
------------------------------------------------------------
[00 | Gene080] 2019/07/11 17:31:38
- best RSS: 0.69012 / k1=0.78, k2=0.53, k3=0.46, k4=91.63
- mean RSS: 501.18926
------------------------------------------------------------
[00 | Gene090] 2019/07/11 17:32:21
- best RSS: 0.31583 / k1=1.14, k2=0.42, k3=0.22, k4=98.03
- mean RSS: 0.44478
------------------------------------------------------------
[00 | Gene100] 2019/07/11 17:33:06
- best RSS: 0.30006 / k1=0.54, k2=0.20, k3=0.19, k4=87.12
- mean RSS: 0.31714
------------------------------------------------------------
[00 | Gene110] 2019/07/11 17:33:41
- best RSS: 0.29444 / k1=0.39, k2=0.14, k3=0.17, k4=87.29
- mean RSS: 0.30831
------------------------------------------------------------
[00 | Gene120] 2019/07/11 17:34:17
- best RSS: 0.28257 / k1=0.25, k2=0.10, k3=0.17, k4=87.13
- mean RSS: 0.30263
------------------------------------------------------------
[00 | Gene130] 2019/07/11 17:34:51
- best RSS: 0.23424 / k1=0.18, k2=0.07, k3=0.14, k4=59.40
- mean RSS: 0.28891
------------------------------------------------------------
[00 | Gene140] 2019/07/11 17:35:27
- best RSS: 0.19044 / k1=0.12, k2=0.04, k3=0.20, k4=93.08
- mean RSS: 0.23561
------------------------------------------------------------
[00 | Gene150] 2019/07/11 17:36:07
- best RSS: 0.13261 / k1=0.08, k2=0.02, k3=0.15, k4=64.74
- mean RSS: 0.16822
------------------------------------------------------------
[00 | Gene160] 2019/07/11 17:36:44
- best RSS: 0.11309 / k1=0.06, k2=0.01, k3=0.15, k4=70.59
- mean RSS: 0.12860
------------------------------------------------------------
[00 | Gene170] 2019/07/11 17:37:32
- best RSS: 0.11274 / k1=0.06, k2=0.01, k3=0.12, k4=58.42
- mean RSS: 0.12277
------------------------------------------------------------
[00 | Gene180] 2019/07/11 17:38:17
- best RSS: 0.11274 / k1=0.06, k2=0.01, k3=0.14, k4=61.57
- mean RSS: 0.12008
------------------------------------------------------------
[00 | Gene190] 2019/07/11 17:38:58
- best RSS: 0.11274 / k1=0.06, k2=0.01, k3=0.14, k4=61.57
- mean RSS: 0.12080
------------------------------------------------------------
[00 | Gene200] 2019/07/11 17:39:38
- best RSS: 0.11253 / k1=0.06, k2=0.01, k3=0.13, k4=61.55
- mean RSS: 0.12124
------------------------------------------------------------
[00 | Gene210] 2019/07/11 17:40:19
- best RSS: 0.11234 / k1=0.06, k2=0.01, k3=0.12, k4=55.07
- mean RSS: 0.12054
------------------------------------------------------------
[00 | Gene220] 2019/07/11 17:41:01
- best RSS: 0.11234 / k1=0.06, k2=0.01, k3=0.12, k4=55.07
- mean RSS: 0.12017
------------------------------------------------------------
[00 | Gene230] 2019/07/11 17:41:41
- best RSS: 0.11212 / k1=0.06, k2=0.01, k3=0.11, k4=49.60
- mean RSS: 0.11922
------------------------------------------------------------
[00 | Gene240] 2019/07/11 17:42:23
- best RSS: 0.11212 / k1=0.06, k2=0.01, k3=0.11, k4=49.93
- mean RSS: 0.11998
------------------------------------------------------------
[00 | Gene250] 2019/07/11 17:43:00
- best RSS: 0.11212 / k1=0.06, k2=0.01, k3=0.10, k4=47.45
- mean RSS: 0.11964
------------------------------------------------------------
============================================================
[01 | Gene000] 2019/07/11 17:43:00
- best RSS: 7.11084 / k1=17.53, k2=1.62, k3=0.36, k4=11.56
- mean RSS: 99000.07402
------------------------------------------------------------
[01 | Gene010] 2019/07/11 17:43:17
- best RSS: 3.92145 / k1=8.97, k2=0.96, k3=0.20, k4=12.30
- mean RSS: 5.13350
------------------------------------------------------------
[01 | Gene020] 2019/07/11 17:43:53
- best RSS: 1.05587 / k1=6.05, k2=2.21, k3=0.14, k4=26.95
- mean RSS: 2.07758
------------------------------------------------------------
[01 | Gene030] 2019/07/11 17:44:29
- best RSS: 0.42825 / k1=3.86, k2=1.68, k3=0.10, k4=39.32
- mean RSS: 0.66314
------------------------------------------------------------
[01 | Gene040] 2019/07/11 17:45:06
- best RSS: 0.35356 / k1=2.32, k2=0.99, k3=0.08, k4=34.79
- mean RSS: 0.40738
------------------------------------------------------------
[01 | Gene050] 2019/07/11 17:45:44
- best RSS: 0.32245 / k1=1.54, k2=0.63, k3=0.07, k4=33.29
- mean RSS: 0.34829
------------------------------------------------------------
[01 | Gene060] 2019/07/11 17:46:26
- best RSS: 0.29949 / k1=1.36, k2=0.50, k3=0.04, k4=16.66
- mean RSS: 0.32177
------------------------------------------------------------
[01 | Gene070] 2019/07/11 17:47:06
- best RSS: 0.28593 / k1=1.09, k2=0.45, k3=0.02, k4=8.59
- mean RSS: 0.30636
------------------------------------------------------------
[01 | Gene080] 2019/07/11 17:47:47
- best RSS: 0.27401 / k1=0.73, k2=0.28, k3=0.02, k4=8.46
- mean RSS: 0.29299
------------------------------------------------------------
[01 | Gene090] 2019/07/11 17:48:29
- best RSS: 0.26846 / k1=0.61, k2=0.24, k3=0.02, k4=6.95
- mean RSS: 0.28139
------------------------------------------------------------
[01 | Gene100] 2019/07/11 17:49:06
- best RSS: 0.26586 / k1=0.55, k2=0.21, k3=0.02, k4=5.04
- mean RSS: 0.27596
------------------------------------------------------------
[01 | Gene110] 2019/07/11 17:49:45
- best RSS: 0.26157 / k1=0.45, k2=0.17, k3=0.01, k4=4.99
- mean RSS: 0.27359
------------------------------------------------------------
[01 | Gene120] 2019/07/11 17:50:23
- best RSS: 0.23916 / k1=0.20, k2=0.08, k3=0.02, k4=7.33
- mean RSS: 0.26761
------------------------------------------------------------
[01 | Gene130] 2019/07/11 17:51:06
- best RSS: 0.18668 / k1=0.13, k2=0.04, k3=0.02, k4=7.41
- mean RSS: 0.23305
------------------------------------------------------------
[01 | Gene140] 2019/07/11 17:51:52
- best RSS: 0.13395 / k1=0.08, k2=0.03, k3=0.02, k4=10.64
- mean RSS: 0.17802
------------------------------------------------------------
[01 | Gene150] 2019/07/11 17:52:31
- best RSS: 0.11389 / k1=0.06, k2=0.02, k3=0.02, k4=9.67
- mean RSS: 0.12977
------------------------------------------------------------
[01 | Gene160] 2019/07/11 17:53:10
- best RSS: 0.11107 / k1=0.06, k2=0.01, k3=0.03, k4=10.90
- mean RSS: 0.11940
------------------------------------------------------------
[01 | Gene170] 2019/07/11 17:53:52
- best RSS: 0.11077 / k1=0.06, k2=0.01, k3=0.03, k4=12.79
- mean RSS: 0.11772
------------------------------------------------------------
[01 | Gene180] 2019/07/11 17:54:39
- best RSS: 0.11077 / k1=0.06, k2=0.01, k3=0.03, k4=12.79
- mean RSS: 0.11758
------------------------------------------------------------
[01 | Gene190] 2019/07/11 17:55:19
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.03, k4=12.79
- mean RSS: 0.11799
------------------------------------------------------------
[01 | Gene200] 2019/07/11 17:55:51
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.04, k4=15.72
- mean RSS: 0.11854
------------------------------------------------------------
[01 | Gene210] 2019/07/11 17:56:22
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.03, k4=13.68
- mean RSS: 0.11725
------------------------------------------------------------
[01 | Gene220] 2019/07/11 17:56:53
- best RSS: 0.11061 / k1=0.06, k2=0.01, k3=0.03, k4=15.07
- mean RSS: 0.11716
------------------------------------------------------------
[01 | Gene230] 2019/07/11 17:57:23
- best RSS: 0.11057 / k1=0.06, k2=0.01, k3=0.03, k4=13.29
- mean RSS: 0.11864
------------------------------------------------------------
[01 | Gene240] 2019/07/11 17:57:54
- best RSS: 0.11057 / k1=0.06, k2=0.01, k3=0.04, k4=17.23
- mean RSS: 0.11807
------------------------------------------------------------
[01 | Gene250] 2019/07/11 17:58:24
- best RSS: 0.11057 / k1=0.06, k2=0.01, k3=0.04, k4=17.45
- mean RSS: 0.11894
------------------------------------------------------------
============================================================
[02 | Gene000] 2019/07/11 17:58:24
- best RSS: 100000.00000 / k1=96.78, k2=10.70, k3=18.93, k4=96.56
- mean RSS: 100000.00000
------------------------------------------------------------
[02 | Gene010] 2019/07/11 17:58:24
- best RSS: 100000.00000 / k1=29.71, k2=61.22, k3=57.12, k4=66.82
- mean RSS: 100000.00000
------------------------------------------------------------
[02 | Gene020] 2019/07/11 17:58:25
- best RSS: 8.49001 / k1=3.63, k2=14.86, k3=48.02, k4=75.98
- mean RSS: 96500.30521
------------------------------------------------------------
[02 | Gene030] 2019/07/11 17:58:45
- best RSS: 7.26037 / k1=5.47, k2=9.24, k3=43.96, k4=84.76
- mean RSS: 4507.56119
------------------------------------------------------------
[02 | Gene040] 2019/07/11 17:59:14
- best RSS: 6.15179 / k1=5.06, k2=5.44, k3=21.03, k4=100.00
- mean RSS: 2006.62717
------------------------------------------------------------
[02 | Gene050] 2019/07/11 17:59:45
- best RSS: 5.09585 / k1=8.03, k2=8.47, k3=4.96, k4=99.03
- mean RSS: 5.78121
------------------------------------------------------------
[02 | Gene060] 2019/07/11 18:00:15
- best RSS: 3.80649 / k1=5.87, k2=5.77, k3=2.52, k4=88.21
- mean RSS: 1004.45264
------------------------------------------------------------
[02 | Gene070] 2019/07/11 18:00:55
- best RSS: 2.25756 / k1=6.27, k2=4.29, k3=1.19, k4=95.74
- mean RSS: 3.02154
------------------------------------------------------------
[02 | Gene080] 2019/07/11 18:01:31
- best RSS: 1.24068 / k1=2.93, k2=2.31, k3=0.78, k4=99.60
- mean RSS: 1.66633
------------------------------------------------------------
[02 | Gene090] 2019/07/11 18:02:05
- best RSS: 0.40693 / k1=2.67, k2=1.15, k3=0.26, k4=100.00
- mean RSS: 0.71598
------------------------------------------------------------
[02 | Gene100] 2019/07/11 18:02:37
- best RSS: 0.34445 / k1=1.71, k2=0.75, k3=0.17, k4=73.97
- mean RSS: 0.38289
------------------------------------------------------------
[02 | Gene110] 2019/07/11 18:03:12
- best RSS: 0.31477 / k1=1.16, k2=0.46, k3=0.18, k4=85.43
- mean RSS: 0.33529
------------------------------------------------------------
[02 | Gene120] 2019/07/11 18:03:49
- best RSS: 0.30072 / k1=0.72, k2=0.27, k3=0.12, k4=56.43
- mean RSS: 0.31561
------------------------------------------------------------
[02 | Gene130] 2019/07/11 18:04:25
- best RSS: 0.29819 / k1=0.49, k2=0.20, k3=0.12, k4=54.99
- mean RSS: 0.30971
------------------------------------------------------------
[02 | Gene140] 2019/07/11 18:04:56
- best RSS: 0.29447 / k1=0.43, k2=0.17, k3=0.14, k4=62.96
- mean RSS: 0.30536
------------------------------------------------------------
[02 | Gene150] 2019/07/11 18:05:25
- best RSS: 0.28927 / k1=0.36, k2=0.13, k3=0.11, k4=48.59
- mean RSS: 0.30136
------------------------------------------------------------
[02 | Gene160] 2019/07/11 18:05:56
- best RSS: 0.26148 / k1=0.21, k2=0.08, k3=0.13, k4=57.02
- mean RSS: 0.29319
------------------------------------------------------------
[02 | Gene170] 2019/07/11 18:06:28
- best RSS: 0.21819 / k1=0.16, k2=0.06, k3=0.10, k4=43.50
- mean RSS: 0.26367
------------------------------------------------------------
[02 | Gene180] 2019/07/11 18:07:02
- best RSS: 0.16434 / k1=0.09, k2=0.03, k3=0.07, k4=37.20
- mean RSS: 0.20936
------------------------------------------------------------
[02 | Gene190] 2019/07/11 18:07:33
- best RSS: 0.11747 / k1=0.07, k2=0.02, k3=0.10, k4=38.97
- mean RSS: 0.15148
------------------------------------------------------------
[02 | Gene200] 2019/07/11 18:08:04
- best RSS: 0.11200 / k1=0.06, k2=0.01, k3=0.09, k4=41.47
- mean RSS: 0.12606
------------------------------------------------------------
[02 | Gene210] 2019/07/11 18:08:40
- best RSS: 0.11141 / k1=0.06, k2=0.01, k3=0.07, k4=30.93
- mean RSS: 0.12050
------------------------------------------------------------
[02 | Gene220] 2019/07/11 18:09:13
- best RSS: 0.11128 / k1=0.06, k2=0.01, k3=0.07, k4=31.18
- mean RSS: 0.11945
------------------------------------------------------------
[02 | Gene230] 2019/07/11 18:09:48
- best RSS: 0.11124 / k1=0.06, k2=0.01, k3=0.06, k4=24.53
- mean RSS: 0.12012
------------------------------------------------------------
[02 | Gene240] 2019/07/11 18:10:22
- best RSS: 0.11067 / k1=0.06, k2=0.01, k3=0.05, k4=23.23
- mean RSS: 0.11768
------------------------------------------------------------
[02 | Gene250] 2019/07/11 18:10:54
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.04, k4=17.29
- mean RSS: 0.11838
------------------------------------------------------------
============================================================
[03 | Gene000] 2019/07/11 18:10:54
- best RSS: 100000.00000 / k1=71.87, k2=28.34, k3=80.97, k4=84.73
- mean RSS: 100000.00000
------------------------------------------------------------
[03 | Gene010] 2019/07/11 18:11:00
- best RSS: 7.01877 / k1=4.62, k2=9.77, k3=20.33, k4=53.76
- mean RSS: 8007.62847
------------------------------------------------------------
[03 | Gene020] 2019/07/11 18:11:32
- best RSS: 6.01931 / k1=6.21, k2=3.76, k3=11.87, k4=77.88
- mean RSS: 506.51146
------------------------------------------------------------
[03 | Gene030] 2019/07/11 18:12:06
- best RSS: 4.30717 / k1=3.75, k2=4.82, k3=4.00, k4=100.00
- mean RSS: 5.50645
------------------------------------------------------------
[03 | Gene040] 2019/07/11 18:12:42
- best RSS: 2.89988 / k1=4.62, k2=3.13, k3=1.95, k4=95.65
- mean RSS: 3.69199
------------------------------------------------------------
[03 | Gene050] 2019/07/11 18:13:22
- best RSS: 1.47755 / k1=3.92, k2=3.28, k3=0.92, k4=90.47
- mean RSS: 2.10779
------------------------------------------------------------
[03 | Gene060] 2019/07/11 18:13:54
- best RSS: 0.64169 / k1=3.40, k2=2.15, k3=0.38, k4=100.00
- mean RSS: 0.98275
------------------------------------------------------------
[03 | Gene070] 2019/07/11 18:14:25
- best RSS: 0.41665 / k1=3.00, k2=1.16, k3=0.25, k4=100.00
- mean RSS: 0.49816
------------------------------------------------------------
[03 | Gene080] 2019/07/11 18:14:55
- best RSS: 0.33582 / k1=1.97, k2=0.76, k3=0.18, k4=83.38
- mean RSS: 0.38279
------------------------------------------------------------
[03 | Gene090] 2019/07/11 18:15:31
- best RSS: 0.31193 / k1=1.16, k2=0.44, k3=0.13, k4=67.53
- mean RSS: 0.34050
------------------------------------------------------------
[03 | Gene100] 2019/07/11 18:16:04
- best RSS: 0.30439 / k1=0.82, k2=0.31, k3=0.12, k4=62.20
- mean RSS: 0.32147
------------------------------------------------------------
[03 | Gene110] 2019/07/11 18:16:40
- best RSS: 0.29884 / k1=0.66, k2=0.24, k3=0.11, k4=51.43
- mean RSS: 0.31292
------------------------------------------------------------
[03 | Gene120] 2019/07/11 18:17:12
- best RSS: 0.29288 / k1=0.50, k2=0.20, k3=0.08, k4=40.04
- mean RSS: 0.30837
------------------------------------------------------------
[03 | Gene130] 2019/07/11 18:17:45
- best RSS: 0.28883 / k1=0.52, k2=0.19, k3=0.06, k4=30.09
- mean RSS: 0.30269
------------------------------------------------------------
[03 | Gene140] 2019/07/11 18:18:21
- best RSS: 0.26798 / k1=0.30, k2=0.12, k3=0.06, k4=28.20
- mean RSS: 0.29612
------------------------------------------------------------
[03 | Gene150] 2019/07/11 18:18:59
- best RSS: 0.23476 / k1=0.16, k2=0.06, k3=0.08, k4=33.24
- mean RSS: 0.27470
------------------------------------------------------------
[03 | Gene160] 2019/07/11 18:19:37
- best RSS: 0.16218 / k1=0.09, k2=0.04, k3=0.09, k4=34.01
- mean RSS: 0.22299
------------------------------------------------------------
[03 | Gene170] 2019/07/11 18:20:20
- best RSS: 0.12080 / k1=0.05, k2=0.02, k3=0.09, k4=38.26
- mean RSS: 0.14513
------------------------------------------------------------
[03 | Gene180] 2019/07/11 18:20:55
- best RSS: 0.11097 / k1=0.06, k2=0.01, k3=0.05, k4=24.88
- mean RSS: 0.12172
------------------------------------------------------------
[03 | Gene190] 2019/07/11 18:21:31
- best RSS: 0.11097 / k1=0.06, k2=0.01, k3=0.05, k4=22.71
- mean RSS: 0.12080
------------------------------------------------------------
[03 | Gene200] 2019/07/11 18:22:12
- best RSS: 0.11097 / k1=0.06, k2=0.01, k3=0.05, k4=24.88
- mean RSS: 0.11857
------------------------------------------------------------
[03 | Gene210] 2019/07/11 18:22:46
- best RSS: 0.11066 / k1=0.06, k2=0.01, k3=0.05, k4=24.88
- mean RSS: 0.11789
------------------------------------------------------------
[03 | Gene220] 2019/07/11 18:23:26
- best RSS: 0.11066 / k1=0.06, k2=0.02, k3=0.04, k4=15.70
- mean RSS: 0.11838
------------------------------------------------------------
[03 | Gene230] 2019/07/11 18:24:00
- best RSS: 0.11066 / k1=0.06, k2=0.01, k3=0.03, k4=14.75
- mean RSS: 0.11874
------------------------------------------------------------
[03 | Gene240] 2019/07/11 18:24:33
- best RSS: 0.11059 / k1=0.06, k2=0.01, k3=0.04, k4=17.67
- mean RSS: 0.11869
------------------------------------------------------------
[03 | Gene250] 2019/07/11 18:25:09
- best RSS: 0.11059 / k1=0.06, k2=0.01, k3=0.04, k4=17.94
- mean RSS: 0.11836
------------------------------------------------------------
============================================================
[04 | Gene000] 2019/07/11 18:25:09
- best RSS: 6.14790 / k1=8.76, k2=7.94, k3=6.19, k4=65.02
- mean RSS: 98000.14560
------------------------------------------------------------
[04 | Gene010] 2019/07/11 18:25:30
- best RSS: 4.65030 / k1=8.20, k2=5.84, k3=4.20, k4=84.41
- mean RSS: 5.63912
------------------------------------------------------------
[04 | Gene020] 2019/07/11 18:26:05
- best RSS: 2.61637 / k1=5.18, k2=4.33, k3=1.59, k4=82.88
- mean RSS: 503.68006
------------------------------------------------------------
[04 | Gene030] 2019/07/11 18:26:39
- best RSS: 1.56262 / k1=6.36, k2=4.39, k3=0.78, k4=99.84
- mean RSS: 2.11204
------------------------------------------------------------
[04 | Gene040] 2019/07/11 18:27:15
- best RSS: 0.75569 / k1=5.13, k2=3.22, k3=0.34, k4=93.14
- mean RSS: 1.14709
------------------------------------------------------------
[04 | Gene050] 2019/07/11 18:27:49
- best RSS: 0.44465 / k1=2.60, k2=1.42, k3=0.23, k4=99.03
- mean RSS: 0.61337
------------------------------------------------------------
[04 | Gene060] 2019/07/11 18:28:23
- best RSS: 0.34973 / k1=2.07, k2=0.80, k3=0.23, k4=89.13
- mean RSS: 0.40550
------------------------------------------------------------
[04 | Gene070] 2019/07/11 18:28:55
- best RSS: 0.31528 / k1=1.16, k2=0.46, k3=0.18, k4=82.38
- mean RSS: 0.34338
------------------------------------------------------------
[04 | Gene080] 2019/07/11 18:29:27
- best RSS: 0.30478 / k1=0.75, k2=0.30, k3=0.16, k4=73.69
- mean RSS: 0.32006
------------------------------------------------------------
[04 | Gene090] 2019/07/11 18:30:00
- best RSS: 0.29941 / k1=0.58, k2=0.22, k3=0.15, k4=72.49
- mean RSS: 0.31269
------------------------------------------------------------
[04 | Gene100] 2019/07/11 18:30:32
- best RSS: 0.29356 / k1=0.40, k2=0.14, k3=0.14, k4=68.51
- mean RSS: 0.30723
------------------------------------------------------------
[04 | Gene110] 2019/07/11 18:31:06
- best RSS: 0.28760 / k1=0.33, k2=0.12, k3=0.13, k4=58.68
- mean RSS: 0.30287
------------------------------------------------------------
[04 | Gene120] 2019/07/11 18:31:39
- best RSS: 0.26008 / k1=0.21, k2=0.08, k3=0.18, k4=90.55
- mean RSS: 0.29670
------------------------------------------------------------
[04 | Gene130] 2019/07/11 18:32:16
- best RSS: 0.19700 / k1=0.14, k2=0.05, k3=0.15, k4=75.81
- mean RSS: 0.25175
------------------------------------------------------------
[04 | Gene140] 2019/07/11 18:32:53
- best RSS: 0.13836 / k1=0.08, k2=0.02, k3=0.19, k4=85.45
- mean RSS: 0.18934
------------------------------------------------------------
[04 | Gene150] 2019/07/11 18:33:27
- best RSS: 0.11540 / k1=0.06, k2=0.02, k3=0.15, k4=66.66
- mean RSS: 0.13626
------------------------------------------------------------
[04 | Gene160] 2019/07/11 18:34:01
- best RSS: 0.11228 / k1=0.06, k2=0.01, k3=0.15, k4=65.88
- mean RSS: 0.12400
------------------------------------------------------------
[04 | Gene170] 2019/07/11 18:34:34
- best RSS: 0.11228 / k1=0.06, k2=0.01, k3=0.10, k4=50.71
- mean RSS: 0.11992
------------------------------------------------------------
[04 | Gene180] 2019/07/11 18:35:11
- best RSS: 0.11228 / k1=0.06, k2=0.01, k3=0.10, k4=50.71
- mean RSS: 0.11945
------------------------------------------------------------
[04 | Gene190] 2019/07/11 18:35:46
- best RSS: 0.11213 / k1=0.06, k2=0.01, k3=0.10, k4=45.63
- mean RSS: 0.11983
------------------------------------------------------------
[04 | Gene200] 2019/07/11 18:36:21
- best RSS: 0.11213 / k1=0.06, k2=0.01, k3=0.10, k4=45.63
- mean RSS: 0.12078
------------------------------------------------------------
[04 | Gene210] 2019/07/11 18:36:56
- best RSS: 0.11189 / k1=0.06, k2=0.01, k3=0.09, k4=41.89
- mean RSS: 0.11969
------------------------------------------------------------
[04 | Gene220] 2019/07/11 18:37:29
- best RSS: 0.11189 / k1=0.06, k2=0.01, k3=0.09, k4=41.89
- mean RSS: 0.11927
------------------------------------------------------------
[04 | Gene230] 2019/07/11 18:38:02
- best RSS: 0.11189 / k1=0.06, k2=0.01, k3=0.09, k4=41.41
- mean RSS: 0.11932
------------------------------------------------------------
[04 | Gene240] 2019/07/11 18:38:35
- best RSS: 0.11180 / k1=0.06, k2=0.01, k3=0.09, k4=40.29
- mean RSS: 0.12008
------------------------------------------------------------
[04 | Gene250] 2019/07/11 18:39:09
- best RSS: 0.11180 / k1=0.06, k2=0.01, k3=0.09, k4=40.29
- mean RSS: 0.11960
------------------------------------------------------------
============================================================
[05 | Gene000] 2019/07/11 18:39:09
- best RSS: 6.83878 / k1=3.30, k2=4.61, k3=28.79, k4=79.39
- mean RSS: 99000.06941
------------------------------------------------------------
[05 | Gene010] 2019/07/11 18:39:26
- best RSS: 5.78054 / k1=3.96, k2=3.39, k3=12.80, k4=90.67
- mean RSS: 3006.26031
------------------------------------------------------------
[05 | Gene020] 2019/07/11 18:39:58
- best RSS: 4.60381 / k1=4.56, k2=3.39, k3=4.86, k4=99.21
- mean RSS: 5.30721
------------------------------------------------------------
[05 | Gene030] 2019/07/11 18:40:31
- best RSS: 3.35634 / k1=2.65, k2=2.72, k3=2.71, k4=96.64
- mean RSS: 4.01258
------------------------------------------------------------
[05 | Gene040] 2019/07/11 18:41:04
- best RSS: 1.49878 / k1=3.78, k2=1.40, k3=0.84, k4=100.00
- mean RSS: 2.46909
------------------------------------------------------------
[05 | Gene050] 2019/07/11 18:41:36
- best RSS: 0.63128 / k1=3.99, k2=1.84, k3=0.38, k4=100.00
- mean RSS: 0.97597
------------------------------------------------------------
[05 | Gene060] 2019/07/11 18:42:09
- best RSS: 0.35610 / k1=1.89, k2=0.59, k3=0.21, k4=100.00
- mean RSS: 0.44767
------------------------------------------------------------
[05 | Gene070] 2019/07/11 18:42:43
- best RSS: 0.31832 / k1=1.19, k2=0.45, k3=0.20, k4=86.46
- mean RSS: 0.34803
------------------------------------------------------------
[05 | Gene080] 2019/07/11 18:43:19
- best RSS: 0.30496 / k1=0.82, k2=0.31, k3=0.18, k4=89.05
- mean RSS: 0.32172
------------------------------------------------------------
[05 | Gene090] 2019/07/11 18:44:00
- best RSS: 0.29823 / k1=0.56, k2=0.22, k3=0.17, k4=83.13
- mean RSS: 0.31221
------------------------------------------------------------
[05 | Gene100] 2019/07/11 18:44:34
- best RSS: 0.28891 / k1=0.33, k2=0.12, k3=0.17, k4=79.69
- mean RSS: 0.30555
------------------------------------------------------------
[05 | Gene110] 2019/07/11 18:45:06
- best RSS: 0.26159 / k1=0.21, k2=0.08, k3=0.17, k4=84.65
- mean RSS: 0.29373
------------------------------------------------------------
[05 | Gene120] 2019/07/11 18:45:37
- best RSS: 0.22016 / k1=0.14, k2=0.05, k3=0.13, k4=60.07
- mean RSS: 0.25452
------------------------------------------------------------
[05 | Gene130] 2019/07/11 18:46:09
- best RSS: 0.16122 / k1=0.09, k2=0.03, k3=0.13, k4=56.34
- mean RSS: 0.19948
------------------------------------------------------------
[05 | Gene140] 2019/07/11 18:46:41
- best RSS: 0.11885 / k1=0.07, k2=0.02, k3=0.14, k4=69.39
- mean RSS: 0.14082
------------------------------------------------------------
[05 | Gene150] 2019/07/11 18:47:16
- best RSS: 0.11098 / k1=0.06, k2=0.01, k3=0.18, k4=81.72
- mean RSS: 0.12275
------------------------------------------------------------
[05 | Gene160] 2019/07/11 18:47:49
- best RSS: 0.11098 / k1=0.06, k2=0.01, k3=0.06, k4=25.69
- mean RSS: 0.11922
------------------------------------------------------------
[05 | Gene170] 2019/07/11 18:48:22
- best RSS: 0.11084 / k1=0.06, k2=0.01, k3=0.06, k4=25.69
- mean RSS: 0.11775
------------------------------------------------------------
[05 | Gene180] 2019/07/11 18:48:59
- best RSS: 0.11075 / k1=0.06, k2=0.01, k3=0.05, k4=21.43
- mean RSS: 0.11848
------------------------------------------------------------
[05 | Gene190] 2019/07/11 18:49:34
- best RSS: 0.11070 / k1=0.06, k2=0.01, k3=0.05, k4=22.01
- mean RSS: 0.11910
------------------------------------------------------------
[05 | Gene200] 2019/07/11 18:50:12
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.04, k4=18.27
- mean RSS: 0.11832
------------------------------------------------------------
[05 | Gene210] 2019/07/11 18:50:48
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.04, k4=19.45
- mean RSS: 0.11797
------------------------------------------------------------
[05 | Gene220] 2019/07/11 18:51:30
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.04, k4=19.45
- mean RSS: 0.11771
------------------------------------------------------------
[05 | Gene230] 2019/07/11 18:52:07
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.04, k4=17.21
- mean RSS: 0.11719
------------------------------------------------------------
[05 | Gene240] 2019/07/11 18:52:41
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.04, k4=17.21
- mean RSS: 0.11686
------------------------------------------------------------
[05 | Gene250] 2019/07/11 18:53:21
- best RSS: 0.11062 / k1=0.06, k2=0.01, k3=0.04, k4=19.45
- mean RSS: 0.11782
------------------------------------------------------------
============================================================
[06 | Gene000] 2019/07/11 18:53:21
- best RSS: 6.79761 / k1=3.71, k2=6.21, k3=5.32, k4=23.97
- mean RSS: 97000.23965
------------------------------------------------------------
[06 | Gene010] 2019/07/11 18:53:44
- best RSS: 5.58857 / k1=5.46, k2=5.75, k3=3.89, k4=38.43
- mean RSS: 6.29374
------------------------------------------------------------
[06 | Gene020] 2019/07/11 18:54:17
- best RSS: 3.74193 / k1=3.81, k2=7.03, k3=1.54, k4=45.55
- mean RSS: 4.76491
------------------------------------------------------------
[06 | Gene030] 2019/07/11 18:54:52
- best RSS: 1.72620 / k1=3.02, k2=2.81, k3=1.05, k4=94.75
- mean RSS: 2.48088
------------------------------------------------------------
[06 | Gene040] 2019/07/11 18:55:28
- best RSS: 0.67247 / k1=2.83, k2=1.74, k3=0.51, k4=88.37
- mean RSS: 1.12758
------------------------------------------------------------
[06 | Gene050] 2019/07/11 18:56:09
- best RSS: 0.39539 / k1=2.35, k2=1.14, k3=0.22, k4=93.95
- mean RSS: 0.50648
------------------------------------------------------------
[06 | Gene060] 2019/07/11 18:56:46
- best RSS: 0.34265 / k1=1.95, k2=0.75, k3=0.21, k4=100.00
- mean RSS: 0.37076
------------------------------------------------------------
[06 | Gene070] 2019/07/11 18:57:21
- best RSS: 0.31301 / k1=0.98, k2=0.40, k3=0.21, k4=92.71
- mean RSS: 0.34050
------------------------------------------------------------
[06 | Gene080] 2019/07/11 18:57:59
- best RSS: 0.30137 / k1=0.59, k2=0.22, k3=0.22, k4=100.00
- mean RSS: 0.31843
------------------------------------------------------------
[06 | Gene090] 2019/07/11 18:58:33
- best RSS: 0.29820 / k1=0.46, k2=0.18, k3=0.22, k4=97.69
- mean RSS: 0.30982
------------------------------------------------------------
[06 | Gene100] 2019/07/11 18:59:07
- best RSS: 0.28932 / k1=0.33, k2=0.13, k3=0.14, k4=67.09
- mean RSS: 0.30605
------------------------------------------------------------
[06 | Gene110] 2019/07/11 18:59:41
- best RSS: 0.27707 / k1=0.27, k2=0.10, k3=0.10, k4=44.37
- mean RSS: 0.29960
------------------------------------------------------------
[06 | Gene120] 2019/07/11 19:00:16
- best RSS: 0.25631 / k1=0.20, k2=0.07, k3=0.13, k4=57.34
- mean RSS: 0.28753
------------------------------------------------------------
[06 | Gene130] 2019/07/11 19:00:50
- best RSS: 0.18591 / k1=0.12, k2=0.04, k3=0.13, k4=53.15
- mean RSS: 0.24893
------------------------------------------------------------
[06 | Gene140] 2019/07/11 19:01:26
- best RSS: 0.14550 / k1=0.09, k2=0.03, k3=0.12, k4=64.42
- mean RSS: 0.18112
------------------------------------------------------------
[06 | Gene150] 2019/07/11 19:02:08
- best RSS: 0.11609 / k1=0.06, k2=0.02, k3=0.11, k4=51.78
- mean RSS: 0.13781
------------------------------------------------------------
[06 | Gene160] 2019/07/11 19:02:45
- best RSS: 0.11197 / k1=0.06, k2=0.01, k3=0.07, k4=30.73
- mean RSS: 0.12174
------------------------------------------------------------
[06 | Gene170] 2019/07/11 19:03:24
- best RSS: 0.11150 / k1=0.06, k2=0.01, k3=0.07, k4=33.07
- mean RSS: 0.12002
------------------------------------------------------------
[06 | Gene180] 2019/07/11 19:04:01
- best RSS: 0.11102 / k1=0.06, k2=0.01, k3=0.06, k4=24.05
- mean RSS: 0.11908
------------------------------------------------------------
[06 | Gene190] 2019/07/11 19:04:34
- best RSS: 0.11102 / k1=0.06, k2=0.01, k3=0.06, k4=27.55
- mean RSS: 0.11957
------------------------------------------------------------
[06 | Gene200] 2019/07/11 19:05:09
- best RSS: 0.11102 / k1=0.06, k2=0.01, k3=0.06, k4=27.89
- mean RSS: 0.11818
------------------------------------------------------------
[06 | Gene210] 2019/07/11 19:05:45
- best RSS: 0.11093 / k1=0.06, k2=0.01, k3=0.05, k4=23.75
- mean RSS: 0.11815
------------------------------------------------------------
[06 | Gene220] 2019/07/11 19:06:23
- best RSS: 0.11093 / k1=0.06, k2=0.01, k3=0.06, k4=24.05
- mean RSS: 0.11795
------------------------------------------------------------
[06 | Gene230] 2019/07/11 19:07:03
- best RSS: 0.11089 / k1=0.06, k2=0.01, k3=0.05, k4=23.75
- mean RSS: 0.11886
------------------------------------------------------------
[06 | Gene240] 2019/07/11 19:07:39
- best RSS: 0.11089 / k1=0.06, k2=0.01, k3=0.06, k4=26.45
- mean RSS: 0.11889
------------------------------------------------------------
[06 | Gene250] 2019/07/11 19:08:17
- best RSS: 0.11082 / k1=0.06, k2=0.01, k3=0.04, k4=19.24
- mean RSS: 0.11830
------------------------------------------------------------
============================================================
[07 | Gene000] 2019/07/11 19:08:17
- best RSS: 100000.00000 / k1=52.95, k2=71.82, k3=38.05, k4=27.33
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene010] 2019/07/11 19:08:17
- best RSS: 100000.00000 / k1=31.34, k2=90.84, k3=74.88, k4=27.27
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene020] 2019/07/11 19:08:17
- best RSS: 100000.00000 / k1=78.58, k2=51.47, k3=18.39, k4=30.73
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene030] 2019/07/11 19:08:17
- best RSS: 100000.00000 / k1=81.08, k2=36.22, k3=65.57, k4=57.29
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene040] 2019/07/11 19:08:17
- best RSS: 100000.00000 / k1=84.70, k2=73.91, k3=15.74, k4=89.44
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene050] 2019/07/11 19:08:17
- best RSS: 100000.00000 / k1=57.30, k2=79.41, k3=100.00, k4=46.78
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene060] 2019/07/11 19:08:18
- best RSS: 100000.00000 / k1=7.56, k2=27.34, k3=53.17, k4=19.02
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene070] 2019/07/11 19:08:18
- best RSS: 100000.00000 / k1=94.22, k2=86.07, k3=2.06, k4=5.09
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene080] 2019/07/11 19:08:18
- best RSS: 100000.00000 / k1=42.56, k2=36.05, k3=34.62, k4=61.69
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene090] 2019/07/11 19:08:18
- best RSS: 100000.00000 / k1=97.34, k2=61.70, k3=61.02, k4=37.54
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene100] 2019/07/11 19:08:18
- best RSS: 100000.00000 / k1=75.76, k2=0.81, k3=100.00, k4=39.17
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene110] 2019/07/11 19:08:18
- best RSS: 100000.00000 / k1=88.26, k2=24.37, k3=42.58, k4=23.29
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene120] 2019/07/11 19:08:19
- best RSS: 100000.00000 / k1=71.58, k2=55.86, k3=70.89, k4=100.00
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene130] 2019/07/11 19:08:19
- best RSS: 100000.00000 / k1=3.47, k2=52.78, k3=61.95, k4=16.43
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene140] 2019/07/11 19:08:19
- best RSS: 100000.00000 / k1=83.12, k2=84.59, k3=58.05, k4=46.10
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene150] 2019/07/11 19:08:19
- best RSS: 100000.00000 / k1=90.65, k2=55.69, k3=8.29, k4=2.68
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene160] 2019/07/11 19:08:19
- best RSS: 100000.00000 / k1=47.31, k2=97.19, k3=96.67, k4=29.13
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene170] 2019/07/11 19:08:19
- best RSS: 100000.00000 / k1=65.82, k2=89.62, k3=68.70, k4=90.61
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene180] 2019/07/11 19:08:20
- best RSS: 100000.00000 / k1=85.48, k2=70.98, k3=70.92, k4=29.08
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene190] 2019/07/11 19:08:20
- best RSS: 100000.00000 / k1=95.44, k2=69.88, k3=87.69, k4=14.07
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene200] 2019/07/11 19:08:20
- best RSS: 100000.00000 / k1=7.83, k2=21.78, k3=30.76, k4=87.25
- mean RSS: 100000.00000
------------------------------------------------------------
[07 | Gene210] 2019/07/11 19:08:21
- best RSS: 6.46967 / k1=6.15, k2=10.32, k3=6.87, k4=43.98
- mean RSS: 93500.43946
------------------------------------------------------------
[07 | Gene220] 2019/07/11 19:08:47
- best RSS: 4.42166 / k1=6.50, k2=6.22, k3=3.24, k4=85.72
- mean RSS: 1005.68945
------------------------------------------------------------
[07 | Gene230] 2019/07/11 19:09:23
- best RSS: 2.31739 / k1=7.85, k2=5.89, k3=1.16, k4=100.00
- mean RSS: 3.12454
------------------------------------------------------------
[07 | Gene240] 2019/07/11 19:09:58
- best RSS: 1.03566 / k1=3.14, k2=2.74, k3=0.74, k4=100.00
- mean RSS: 1.72120
------------------------------------------------------------
[07 | Gene250] 2019/07/11 19:10:33
- best RSS: 0.50676 / k1=3.15, k2=1.56, k3=0.33, k4=100.00
- mean RSS: 0.76611
------------------------------------------------------------
============================================================
[08 | Gene000] 2019/07/11 19:10:33
- best RSS: 5.67819 / k1=3.57, k2=1.00, k3=12.07, k4=97.06
- mean RSS: 99000.05705
------------------------------------------------------------
[08 | Gene010] 2019/07/11 19:10:51
- best RSS: 4.80849 / k1=2.95, k2=1.17, k3=8.18, k4=100.00
- mean RSS: 5.50958
------------------------------------------------------------
[08 | Gene020] 2019/07/11 19:11:26
- best RSS: 3.70930 / k1=4.03, k2=1.18, k3=2.98, k4=100.00
- mean RSS: 4.41342
------------------------------------------------------------
[08 | Gene030] 2019/07/11 19:12:09
- best RSS: 2.09115 / k1=2.17, k2=1.22, k3=1.36, k4=99.38
- mean RSS: 2.93890
------------------------------------------------------------
[08 | Gene040] 2019/07/11 19:12:54
- best RSS: 0.78292 / k1=2.91, k2=1.62, k3=0.53, k4=98.65
- mean RSS: 1.42660
------------------------------------------------------------
[08 | Gene050] 2019/07/11 19:13:35
- best RSS: 0.44435 / k1=2.54, k2=1.07, k3=0.30, k4=94.12
- mean RSS: 0.59328
------------------------------------------------------------
[08 | Gene060] 2019/07/11 19:14:12
- best RSS: 0.32985 / k1=1.56, k2=0.62, k3=0.21, k4=93.54
- mean RSS: 0.37553
------------------------------------------------------------
[08 | Gene070] 2019/07/11 19:14:47
- best RSS: 0.30935 / k1=0.90, k2=0.33, k3=0.21, k4=96.31
- mean RSS: 0.33237
------------------------------------------------------------
[08 | Gene080] 2019/07/11 19:15:27
- best RSS: 0.30226 / k1=0.71, k2=0.26, k3=0.17, k4=85.69
- mean RSS: 0.31632
------------------------------------------------------------
[08 | Gene090] 2019/07/11 19:16:06
- best RSS: 0.29917 / k1=0.60, k2=0.23, k3=0.15, k4=74.18
- mean RSS: 0.30955
------------------------------------------------------------
[08 | Gene100] 2019/07/11 19:16:48
- best RSS: 0.29352 / k1=0.39, k2=0.16, k3=0.14, k4=68.73
- mean RSS: 0.30881
------------------------------------------------------------
[08 | Gene110] 2019/07/11 19:17:28
- best RSS: 0.28540 / k1=0.27, k2=0.11, k3=0.21, k4=100.00
- mean RSS: 0.30258
------------------------------------------------------------
[08 | Gene120] 2019/07/11 19:18:03
- best RSS: 0.27504 / k1=0.25, k2=0.09, k3=0.14, k4=71.70
- mean RSS: 0.29786
------------------------------------------------------------
[08 | Gene130] 2019/07/11 19:18:43
- best RSS: 0.21772 / k1=0.13, k2=0.05, k3=0.14, k4=54.63
- mean RSS: 0.26681
------------------------------------------------------------
[08 | Gene140] 2019/07/11 19:19:16
- best RSS: 0.15047 / k1=0.10, k2=0.03, k3=0.15, k4=66.42
- mean RSS: 0.18984
------------------------------------------------------------
[08 | Gene150] 2019/07/11 19:19:52
- best RSS: 0.11525 / k1=0.06, k2=0.02, k3=0.14, k4=66.45
- mean RSS: 0.14005
------------------------------------------------------------
[08 | Gene160] 2019/07/11 19:20:29
- best RSS: 0.11283 / k1=0.06, k2=0.02, k3=0.11, k4=52.24
- mean RSS: 0.12403
------------------------------------------------------------
[08 | Gene170] 2019/07/11 19:21:03
- best RSS: 0.11229 / k1=0.06, k2=0.01, k3=0.11, k4=49.17
- mean RSS: 0.12075
------------------------------------------------------------
[08 | Gene180] 2019/07/11 19:21:38
- best RSS: 0.11210 / k1=0.06, k2=0.01, k3=0.08, k4=38.69
- mean RSS: 0.11996
------------------------------------------------------------
[08 | Gene190] 2019/07/11 19:22:16
- best RSS: 0.11181 / k1=0.06, k2=0.01, k3=0.07, k4=34.56
- mean RSS: 0.12083
------------------------------------------------------------
[08 | Gene200] 2019/07/11 19:22:56
- best RSS: 0.11179 / k1=0.06, k2=0.01, k3=0.09, k4=38.54
- mean RSS: 0.11921
------------------------------------------------------------
[08 | Gene210] 2019/07/11 19:23:33
- best RSS: 0.11163 / k1=0.06, k2=0.01, k3=0.08, k4=35.10
- mean RSS: 0.11851
------------------------------------------------------------
[08 | Gene220] 2019/07/11 19:24:09
- best RSS: 0.11139 / k1=0.06, k2=0.01, k3=0.08, k4=36.48
- mean RSS: 0.11829
------------------------------------------------------------
[08 | Gene230] 2019/07/11 19:24:47
- best RSS: 0.11139 / k1=0.06, k2=0.01, k3=0.07, k4=31.29
- mean RSS: 0.11975
------------------------------------------------------------
[08 | Gene240] 2019/07/11 19:25:25
- best RSS: 0.11124 / k1=0.06, k2=0.01, k3=0.07, k4=30.62
- mean RSS: 0.11988
------------------------------------------------------------
[08 | Gene250] 2019/07/11 19:26:01
- best RSS: 0.11124 / k1=0.06, k2=0.01, k3=0.07, k4=31.14
- mean RSS: 0.11918
------------------------------------------------------------
============================================================
[09 | Gene000] 2019/07/11 19:26:01
- best RSS: 100000.00000 / k1=57.00, k2=97.39, k3=94.79, k4=66.34
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene010] 2019/07/11 19:26:01
- best RSS: 100000.00000 / k1=26.07, k2=85.03, k3=54.72, k4=45.71
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene020] 2019/07/11 19:26:01
- best RSS: 100000.00000 / k1=99.23, k2=7.40, k3=65.25, k4=80.56
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene030] 2019/07/11 19:26:01
- best RSS: 100000.00000 / k1=40.85, k2=94.21, k3=19.32, k4=71.82
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene040] 2019/07/11 19:26:01
- best RSS: 100000.00000 / k1=9.25, k2=89.53, k3=63.01, k4=18.91
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene050] 2019/07/11 19:26:01
- best RSS: 100000.00000 / k1=45.38, k2=91.97, k3=72.07, k4=99.83
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene060] 2019/07/11 19:26:02
- best RSS: 100000.00000 / k1=75.06, k2=32.83, k3=0.90, k4=42.36
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene070] 2019/07/11 19:26:02
- best RSS: 100000.00000 / k1=83.62, k2=71.67, k3=51.73, k4=7.62
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene080] 2019/07/11 19:26:02
- best RSS: 100000.00000 / k1=61.62, k2=12.86, k3=12.30, k4=28.86
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene090] 2019/07/11 19:26:02
- best RSS: 100000.00000 / k1=32.36, k2=2.25, k3=9.12, k4=41.03
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene100] 2019/07/11 19:26:02
- best RSS: 100000.00000 / k1=83.78, k2=84.64, k3=19.85, k4=7.33
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene110] 2019/07/11 19:26:02
- best RSS: 100000.00000 / k1=16.13, k2=46.17, k3=57.00, k4=70.29
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene120] 2019/07/11 19:26:02
- best RSS: 100000.00000 / k1=85.98, k2=43.84, k3=100.00, k4=6.77
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene130] 2019/07/11 19:26:02
- best RSS: 100000.00000 / k1=49.75, k2=57.98, k3=75.53, k4=33.87
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene140] 2019/07/11 19:26:03
- best RSS: 100000.00000 / k1=22.61, k2=22.10, k3=10.26, k4=35.48
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene150] 2019/07/11 19:26:03
- best RSS: 100000.00000 / k1=66.46, k2=27.31, k3=74.41, k4=100.00
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene160] 2019/07/11 19:26:03
- best RSS: 100000.00000 / k1=28.49, k2=53.22, k3=34.46, k4=55.09
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene170] 2019/07/11 19:26:03
- best RSS: 100000.00000 / k1=45.11, k2=74.95, k3=64.86, k4=58.07
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene180] 2019/07/11 19:26:03
- best RSS: 100000.00000 / k1=29.07, k2=20.80, k3=40.70, k4=82.56
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene190] 2019/07/11 19:26:03
- best RSS: 100000.00000 / k1=89.77, k2=42.19, k3=75.53, k4=80.93
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene200] 2019/07/11 19:26:03
- best RSS: 100000.00000 / k1=57.69, k2=62.42, k3=95.02, k4=21.60
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene210] 2019/07/11 19:26:03
- best RSS: 100000.00000 / k1=100.00, k2=49.13, k3=75.06, k4=70.17
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene220] 2019/07/11 19:26:03
- best RSS: 100000.00000 / k1=59.73, k2=21.23, k3=87.94, k4=20.46
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene230] 2019/07/11 19:26:04
- best RSS: 100000.00000 / k1=0.72, k2=61.88, k3=82.84, k4=76.41
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene240] 2019/07/11 19:26:04
- best RSS: 100000.00000 / k1=73.59, k2=75.31, k3=16.17, k4=6.94
- mean RSS: 100000.00000
------------------------------------------------------------
[09 | Gene250] 2019/07/11 19:26:04
- best RSS: 100000.00000 / k1=73.87, k2=51.54, k3=23.86, k4=90.09
- mean RSS: 100000.00000
------------------------------------------------------------

発展課題:Rap1のデータに対して、Rasモデルのパラメータ($k_1,\ldots,k_6$)を推定せよ。¶

  • RasモデルとRap1モデルの関係はどうなっているか?
  • Rasモデルを使った場合とRap1モデルを使った場合で、パラメータや残差二乗和にどのような違いが現れたか?
  • 残差二乗和が似ている最適化試行では、パラメータの推定値も似ているか?

予想:¶

$\frac{dGAP}{dt}=0$ になるようにパラメータがフィッティング(つまり、Rasモデルと本質的には変わらないということ)するのではないか?

もしくは変にオーバーフィッティング??

In [ ]:
 

  • « 分子進化学 第10回
  • シミュレーション実習 Day4 »
hidden
Table of Contents
Published
Jul 11, 2019
Last Updated
Jul 11, 2019
Category
生命科学基礎実験
Tags
  • 3S 95
  • 生命科学基礎実験 14
Contact
Other contents
  • Home
  • Blog
  • Front-End
  • Kerasy
  • Python-Charmers
  • Translation-Gummy
    • 3S - Shuto's Notes
    • MIT
    • Powered by Pelican. Theme: Elegant