解答
1
$$
\begin{aligned}
\int_{\mathbb{R}^m}f_X(\mathbf{x})d^mx
&= \int_{\mathbb{R}^m}\frac{1}{\left(2\pi\right)^{m/2}\left|\boldsymbol{\Sigma}\right|^{1/2}}\exp\left(-\frac{1}{2}\left(\mathbf{x} - \boldsymbol{\mu}\right)^T\boldsymbol{\Sigma}^{-1}\left(\mathbf{x} - \boldsymbol{\mu}\right)\right)d^mx\\
&= \int_{\mathbb{R}^m}\frac{1}{\left(2\pi\right)^{m/2}}\exp\left(-\frac{1}{2}\left(x_1^2 + \cdots + x_m^2\right)\right)d^mx\\
&=\prod_{k=1}^m\int_{\mathbb{R}}\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{1}{2}x_k^2\right)dx_k\\
&=1
\end{aligned}
$$
上では、以下のガウス積分を用いた。
$$I = \int_{-\infty}^{\infty}e^{-ax^2}dx = \int_{-\infty}^{\infty}e^{-ay^2}dy$$
を考える。ここで、
$$\begin{aligned}
I^2
&= \left(\int_{-\infty}^{\infty}e^{-ax^2}dx\right)^2\\
&= \left(\int_{-\infty}^{\infty}e^{-ax^2}dx\right)\left(\int_{-\infty}^{\infty}e^{-ay^2}dy\right)\\
&=\int_{\infty}^{\infty}dx\int_{-\infty}^{\infty}dye^{-a(x^2+y^2)}\\
&= \int_0^{\infty}rdr\int_0^{2\pi}d\theta e^{-ar^2}\\
&= 2\pi\left[-\frac{1}{2a}e^{-ar^2}\right]_0^{\infty}\\
&= \frac{\pi}{a}\\
\therefore I&= \sqrt{\frac{\pi}{a}}
\end{aligned}$$
2
\(\Sigma\) が実対称行列なので、実直交行列 \(O\) を用いて \(\Sigma = O\Lambda O^T\) と対角化できる。(\(\Lambda = \left(\lambda_1,\ldots,\lambda_m\right)\))
したがって、
$$
\begin{aligned}
\int_{\mathbb{R}^m}f_X(\mathbf{x})d^mx
&= \int_{\mathbb{R}^m}\frac{1}{\left(2\pi\right)^{m/2}\left|\Sigma\right|^{1/2}}\exp\left(-\frac{1}{2}\left(\mathbf{x} - \boldsymbol{\mu}\right)^T\Sigma^{-1}\left(\mathbf{x} - \boldsymbol{\mu}\right)\right)d^mx\\
&= \int_{\mathbb{R}^m}\frac{1}{\left(2\pi\right)^{m/2}\left|O\Lambda O^T\right|^{1/2}}\exp\left(-\frac{1}{2}\left(\mathbf{x} - \boldsymbol{\mu}\right)^T\left(O\Lambda O^T\right)^{-1}\left(\mathbf{x} - \boldsymbol{\mu}\right)\right)d^mx\\
&= \int_{\mathbb{R}^m}\frac{1}{\left(2\pi\right)^{m/2}\left|\Lambda\right|^{1/2}}\exp\left(-\frac{1}{2}\left(O^{-1}\left(\mathbf{x} - \boldsymbol{\mu}\right)\right)^T\Lambda^{-1}\left(O^{-1}\left(\mathbf{x} - \boldsymbol{\mu}\right)\right)\right)d^mx\\
&= \int_{\mathbb{R}^m}\frac{1}{\left(2\pi\right)^{m/2}\left|\Lambda\right|^{1/2}}\exp\left(\sum_{k=1}^m-\frac{1}{2}\mathbf{o}_k^{-1T}(x_k-\mu_k)\lambda_k^{-1}\mathbf{o}_k^{-1}(x_k-\mu_k)\right)d^mx\\
&= \int_{\mathbb{R}^m}\frac{1}{\left(2\pi\right)^{m/2}\sum_{k=1}^m\lambda_k^{1/2}}\exp\left(\sum_{k=1}^m-\frac{1}{2}(x_k-\mu_k)\lambda_k^{-1}(x_k-\mu_k)\right)d^mx\\
&= \prod_{k=1}^m\int_{\mathbb{R}}\frac{1}{(2\pi)^{1/2}\lambda_k^{(1/2)}}\exp\left(-\frac{1}{2}\lambda_k^{-1}y_k^2\right)dy_k\\
&= \prod_{k=1}^m\frac{1}{(2\pi)^{1/2}\lambda_k^{(1/2)}}\sqrt{\frac{2\pi}{\lambda_k^{-1}}}\\
&= 1
\end{aligned}
$$
3
\(2\) と同様に考えて、
$$
\begin{aligned}
\mathbb{E}\left(X_k\right)
&= \int_{\mathbb{R}^m}x_kf_X(\mathbf{x})d^mx\\
&= \int_{\mathbb{R}^m}\frac{1}{\left(2\pi\right)^{m/2}\sum_{k=1}^m\lambda_k^{1/2}}x_k\exp\left(\sum_{k=1}^m-\frac{1}{2}(x_k-\mu_k)\lambda_k^{-1}(x_k-\mu_k)\right)d^mx\\
&= \int_{\mathbb{R}^m}\frac{1}{\left(2\pi\right)^{m/2}\lambda_k^{1/2}}x_k\exp\left(-\frac{1}{2}\left(x_k-\mu_k\right)\lambda_k^{-1}\left(x_k-\mu_k\right)\right)dx_k\\
&=\frac{1}{\left(2\pi\right)^{m/2}\lambda_k^{1/2}}\int_{\mathbb{R}^m}\left(y_k + \mu_k\right)\exp\left(-\frac{1}{2}\lambda_k^{-1}y_k^2\right)dy_k\\
&= \frac{1}{\left(2\pi\right)^{m/2}\lambda_k^{1/2}}\left[-\frac{1}{\lambda_k^{-1}}\exp\left(-\frac{1}{2}\lambda_k^{-1}y_k^2\right)\right]_{-\infty}^{\infty} + \mu_k\\
&=\mu_k
\end{aligned}
$$
4
\(2\) と同様に考えて、