3A
  • Portfolio Top
  • Categories
  • Tags
  • Archives

Ex4. Exponential Distribution

Q4

解答

1

$$ \int_0^{\infty}f_X(x)dx = \int_0^{\infty}\lambda e^{-\lambda x}dx = \left[-e^{-\lambda x}\right]_0^{\infty} = 1 $$

2

$$\begin{aligned} \mathbb{E}\left(X\right) &= \int_0^{\infty}xf_X(x)dx = \int_0^{\infty}x\lambda e^{-\lambda x}dx\\ &= \int_0^{\infty}x\left(-e^{-\lambda x}\right)^{\prime}dx\\ &= \left[-xe^{-\lambda x}\right]_0^{\infty} - \int_0^{\infty}-e^{-\lambda x} dx\\ &= \left[-\frac{1}{\lambda}e^{-\lambda x}\right]_0^{\infty}\\ &= \frac{1}{\lambda} \end{aligned}$$

3

$$ \mathbb{P}\left(X>t\right) = \int_t^{\infty}f(x)dx = \left[-e^{-\lambda x}\right]_t^{\infty} = e^{-\lambda t} $$

4

$$\begin{aligned} \mathbb{P}\left(X>s+t|X>s\right) &= \frac{\mathbb{P}\left(X>s+t\right)}{\mathbb{P}\left(X>s\right)}\\ &= \frac{\int_{s+t}^{\infty}f_X(x)dx}{\int_s^{\infty}f_X(x)dx}\\ &= \frac{e^{-\lambda\left(s+t\right)}}{e^{-\lambda s}}\\ &= e^{-\lambda t} = \mathbb{P}\left(X>t\right) \end{aligned}$$

  • « EX3. Law of Large Numbers
  • Ex.5 Categorical Distribution »
hidden
Table of Contents
Published
Nov 4, 2019
Last Updated
Nov 4, 2019
Category
情報基礎実験(木立)
Tags
  • 3A 127
  • 情報基礎実験(木立) 20
Contact
Other contents
  • Home
  • Blog
  • Front-End
  • Kerasy
  • Python-Charmers
  • Translation-Gummy
    • 3A - Shuto's Notes
    • MIT
    • Powered by Pelican. Theme: Elegant