3A
  • Portfolio Top
  • Categories
  • Tags
  • Archives

EX3. Law of Large Numbers

Q3

解答

1

$$ \begin{aligned} \varphi_{Z}(t) &= \int_{-\infty}^{\infty}e^{itz}\delta\left(z-\mu\right)dz\\ &= e^{it\mu} \end{aligned} $$

2

$$ \begin{aligned} \varphi_{\bar{X}^{(n)}}(t) &= \varphi_{\frac{X_1 + \cdots + X_n}{n}}(t)\\ &= \varphi_X\left(\frac{X_1}{n}\right)\cdots\varphi_X\left(\frac{X_n}{n}\right)\\ &= \left[\varphi_X\left(\frac{X}{n}\right)\right]^n\\ &= \exp\left(n\log\left(\varphi_X\left(\frac{X}{n}\right)\right)\right)\\ &= \exp\left(n\log\left(1 + \mathbb{E}\left(X\right)\frac{1}{1!}\left(\frac{it}{n}\right)^1 + \mathcal{O}\left(\frac{1}{n^2}\right)\right)\right)\\ \end{aligned} $$

ここで、

$$ \begin{aligned} &\log\left(1 + \mathbb{E}\left(X\right)\frac{1}{1!}\left(\frac{it}{n}\right)^1 + \mathcal{O}\left(\frac{1}{n^2}\right)\right)\\ &= \sum_{k=1}^{\infty}\left(-1\right)^{k+1}\cdot\frac{\left(\mathbb{E}\left(X\right)\frac{it}{n} + \mathcal{O}\left(\frac{1}{n^2}\right)\right)^k}{k}\\ &= \mathbb{E}\left(X\right)\frac{it}{n} + \mathcal{O}\left(\frac{1}{n^2}\right) \end{aligned} $$

だから、

$$ \begin{aligned} \varphi_{\bar{X}^{(n)}}(t) &= \exp\left(n\cdot\mathbb{E}\left(X\right)\frac{it}{n} + \mathcal{O}\left(\frac{1}{n}\right)\right)\\ &= \exp\left(it\mu + \mathcal{O}\left(\frac{1}{n}\right)\right)\\ &\underset{n\rightarrow\infty}{\longrightarrow}e^{it\mu} = \varphi_{\bar{X}^{(n)}}(t) \end{aligned} $$

  • « EX2. Characteristic function
  • Ex4. Exponential Distribution »
hidden
Table of Contents
Published
Nov 4, 2019
Last Updated
Nov 4, 2019
Category
情報基礎実験(木立)
Tags
  • 3A 127
  • 情報基礎実験(木立) 20
Contact
Other contents
  • Home
  • Blog
  • Front-End
  • Kerasy
  • Python-Charmers
  • Translation-Gummy
    • 3A - Shuto's Notes
    • MIT
    • Powered by Pelican. Theme: Elegant