3A
  • Portfolio Top
  • Categories
  • Tags
  • Archives

Ex.14 Brownian motion

Q14

解答

1

\(n=n\) の時に以下が成立すると仮定する。

$$p\left(x_n|x_0\right) = \frac{1}{\sqrt{2\pi\sigma_s^2n}}\exp\left(-\frac{1}{2\sigma_s^2n}\left(x_n-x_0\right)^2\right)$$

すると、

$$ \begin{aligned} p\left(x_{n+1}|x_0\right) &= \int_{-\infty}^{\infty}dx_np\left(x_{n+1}|x_n\right)p\left(x_n|x_0\right)\\ &= \int_{-\infty}^{\infty}dx_n\left(\frac{1}{\sqrt{2\pi\sigma_s^2}}\exp\left(-\frac{1}{2\sigma_s^2}\left(x_{n+1}-x_n\right)^2\right)\right)\left(\frac{1}{\sqrt{2\pi\sigma_s^2n}}\exp\left(-\frac{1}{2\sigma_s^2n}\left(x_n-x_0\right)^2\right)\right)\\ &= \frac{1}{\sqrt{2\pi\sigma_s^2}}\frac{1}{\sqrt{2\pi\sigma_s^2n}}\int_{-\infty}^{\infty}dx_n\exp\left\{-\frac{1}{2\sigma_s^2}\left(\left(x_{n+1}-x_n\right)^2 +\frac{1}{n}\left(x_n-x_0\right)^2\right)\right\}\\ \end{aligned} $$

ここで、\(\exp\) の内部を \(x_n\) に注目すると、

$$ \begin{aligned} &\left(x_{n+1}-x_n\right)^2 +\frac{1}{n}\left(x_n-x_0\right)^2\\ &=\frac{n+1}{n}x_n^2 + 2\left(x_{n+1}+\frac{x_0}{n}\right)x_n + \left(x_{n+1}^2 + \frac{1}{n}x_0^2\right)\\ &=\frac{n+1}{n}\left(x_n-\frac{n}{n+1}\left(x_{n+1}+\frac{x_0}{n}\right)\right)^2 + \frac{1}{n+1}\left(x_{n+1}-x_0\right)^2 \end{aligned} $$

と整理できる。また、ガウス積分より上式の第1項は、

$$ \int_{-\infty}^{\infty}dx_n\exp\left(-\frac{1}{2\sigma_s^2}\frac{n+1}{n}\left(x_n-\frac{n}{n+1}\left(x_{n+1}+\frac{x_0}{n}\right)\right)^2\right) = \sqrt{2\pi\sigma_s^2\frac{n}{n+1}} $$

と積分できる。したがって、これらを代入して、

$$ \begin{aligned} p\left(x_{n+1}|x_0\right) &= \frac{1}{\sqrt{2\pi\sigma_s^2}}\frac{1}{\sqrt{2\pi\sigma_s^2n}}\int_{-\infty}^{\infty}dx_n\exp\left\{-\frac{1}{2\sigma_s^2}\left(\left(x_{n+1}-x_n\right)^2 +\frac{1}{n}\left(x_n-x_0\right)^2\right)\right\}\\ &= \frac{1}{\sqrt{2\pi\sigma_s^2}}\frac{1}{\sqrt{2\pi\sigma_s^2n}}\left(\sqrt{2\pi\sigma_s^2\frac{n}{n+1}}\right)\exp\left\{-\frac{1}{2\sigma_s^2}\frac{1}{n+1}\left(x_{n+1}-x_0\right)^2\right\}\\ &=\frac{1}{\sqrt{2\pi\sigma_s^2\left(n+1\right)}}\exp\left(-\frac{1}{2\sigma_s^2\left(n+1\right)}\left(x_{n+1}-x_0\right)^2\right) \end{aligned} $$

以上より、帰納法から題意が示せた。

2

$$ \begin{aligned} \frac{\partial p}{\partial t} &=\frac{1}{\sqrt{2\pi\sigma^2}}\left(-\frac{1}{2}t^{-\frac{3}{2}} + \frac{\left(x-y\right)^2}{2\sigma^2}t^{-\frac{5}{2}}\right)\exp\left(-\frac{1}{2\sigma^2t}\left(x-y\right)^2\right)\\ \frac{\partial p}{\partial x} &= \frac{1}{\sqrt{2\pi\sigma^2t}}\left(-\frac{1}{\sigma^2t}\left(x-y\right)\right)\exp\left(-\frac{1}{2\sigma^2t}\left(x-y\right)^2\right)\\ \frac{\partial^2 p}{\partial x^2} &= \frac{1}{\sqrt{2\pi\sigma^2t}}\left(-\frac{1}{\sigma^2t}-\frac{1}{\sigma^2t}\left(x-y\right)\left(-\frac{x-y}{\sigma^2t}\right)\right)\exp\left(-\frac{1}{2\sigma^2t}\left(x-y\right)^2\right)\\ &=\frac{1}{\sqrt{2\pi\sigma^2}}\frac{1}{\sqrt{t}}\left(\frac{1}{\sigma^2t}\right)\left(-1 + \frac{\left(x-y\right)^2}{\sigma^2t}\right)\exp\left(-\frac{1}{2\sigma^2t}\left(x-y\right)^2\right)\\ &=\frac{1}{\sqrt{2\pi\sigma^2}}\left(\frac{1}{\sigma^2}\right)\left(-t^{-\frac{3}{2}} + \frac{\left(x-y\right)^2}{\sigma^2}t^{-\frac{5}{2}}\right)\exp\left(-\frac{1}{2\sigma^2t}\left(x-y\right)^2\right)\\ &=\frac{2}{\sigma^2}\frac{\partial p}{\partial t} \end{aligned} $$

より、題意が示された。


これにより、「ミクロスコピックな」ブラウン運動から「マクロスコピックな」拡散方程式を導出できた。


  • « Ex.13 Sparse Modeling
  • Ex.15 Neural Network »
hidden
Table of Contents
Published
Nov 4, 2019
Last Updated
Nov 4, 2019
Category
情報基礎実験(木立)
Tags
  • 3A 127
  • 情報基礎実験(木立) 20
Contact
Other contents
  • Home
  • Blog
  • Front-End
  • Kerasy
  • Python-Charmers
  • Translation-Gummy
    • 3A - Shuto's Notes
    • MIT
    • Powered by Pelican. Theme: Elegant