3A
  • Portfolio Top
  • Categories
  • Tags
  • Archives

Ex.11 Data Assimilation

Q11

解答

1

最適性条件より、最適な \(\{x_i\},\{\lambda_i\},\theta\) の下では、

$$ \begin{cases} \begin{aligned} \frac{\partial L}{\partial x_i} &= 0 & (i=1,\ldots,n+1)\\ \frac{\partial L}{\partial \lambda_i} &= 0 & (i=1,\ldots,n+1)\\ \frac{\partial L}{\partial\theta} &= 0 \end{aligned} \end{cases} $$

が成り立つので、

$$ \begin{aligned} \frac{\partial L}{\partial x_i} &= \frac{\partial J_D\left(x_1,\ldots,x_n\right)}{\partial x_i} - \left(\lambda_i - \lambda_{i+1}\frac{\partial F\left(x_i,\theta\right)}{\partial x_i}\right) = 0\\ \therefore \lambda_i &= \lambda_{i+1}\frac{\partial F\left(x_i,\theta\right)}{\partial x_i} + \frac{\partial J_D\left(x_1,\ldots,x_n\right)}{\partial x_i} \end{aligned} $$

となる。特に、\(i=n+1\) に関しては、

$$ \begin{aligned} \frac{\partial L}{\partial x_{n+1}} &= \frac{\partial J_D\left(x_1,\ldots,x_n\right)}{\partial x_{n+1}} - \lambda_{n+1} = -\lambda_{n+1} = 0\\ \therefore \lambda_{n+1} &= 0 \end{aligned} $$

が成り立つ。

2

$$ \begin{aligned} x_{i+1} &= F\left(x_i;\theta\right)\\ \frac{\partial x_{i+1}}{\partial\theta} &= \frac{\partial F\left(x_i;\theta\right)}{\partial\theta}\\ &= \frac{\partial F}{\partial x}\left(x_i;\theta\right)\frac{}{} \end{aligned} $$

a


  • « Ex.10 Expectation Maximization Algorithm
  • Ex.12 Order Statistics »
hidden
Table of Contents
Published
Nov 4, 2019
Last Updated
Nov 4, 2019
Category
情報基礎実験(木立)
Tags
  • 3A 127
  • 情報基礎実験(木立) 20
Contact
Other contents
  • Home
  • Blog
  • Front-End
  • Kerasy
  • Python-Charmers
  • Translation-Gummy
    • 3A - Shuto's Notes
    • MIT
    • Powered by Pelican. Theme: Elegant