3A
  • Portfolio Top
  • Categories
  • Tags
  • Archives

Ex.10 Expectation Maximization Algorithm

Q10

解答

1

$$ \begin{aligned} &\mathcal{Q}_{\text{EM}}\left(\theta|\theta^{\prime}\right) + H\left(\theta^{\prime}\right) + \mathrm{KL}\left(\theta^{\prime}\|\theta\right)\\ =&\sum_{h=1}^n\sum_{z_h}\log\left(p\left(x_h,z_h|\theta\right)\right)\frac{p\left(x_h,z_h|\theta^{\prime}\right)}{p\left(x_h|\theta^{\prime}\right)} - \sum_{h=1}^n\sum_{z_h}p\left(z_h|x_h,\theta^{\prime}\right)\log\left(p\left(z_h|x_h,\theta^{\prime}\right)\right)\\ &+ \sum_{h=1}^n\sum_{z_h}p\left(z_h|x_h,\theta^{\prime}\right)\log\left(\frac{p\left(z_h|x_h,\theta^{\prime}\right)}{p\left(z_h|x_h,\theta\right)}\right)\\ =&\sum_{h=1}^n\sum_{z_h}\log\left(p\left(x_h,z_h|\theta\right)\right)\frac{p\left(x_h,z_h|\theta^{\prime}\right)}{p\left(x_h|\theta^{\prime}\right)} - \sum_{h=1}^n\sum_{z_h}p\left(z_h|x_h,\theta^{\prime}\right)\log\left(p\left(z_h|x_h,\theta\right)\right)\\ =&\sum_{h=1}^n\sum_{z_h}\log\left(p\left(x_h,z_h|\theta\right)\right)p\left(z_h|x_h,\theta^{\prime}\right) - \sum_{h=1}^n\sum_{z_h}p\left(z_h|x_h,\theta^{\prime}\right)\log\left(p\left(z_h|x_h,\theta\right)\right)\quad\left(\because\text{ Conditional probability}\right)\\ =&\sum_{h=1}^n\sum_{z_h}p\left(z_h|x_h,\theta^{\prime}\right)\log\left(p\left(x_h|\theta\right)\right)\quad\left(\because\text{ Conditional probability}\right)\\ =&\sum_{h=1}^n\log\left(p\left(x_h|\theta\right)\right)\sum_{z_h}p\left(z_h|x_h,\theta^{\prime}\right)\\ =&\sum_{h=1}^n\log\left(p\left(x_h|\theta\right)\right)\quad\left(\because\text{ Marginalization}\right)\\ =&l\left(\theta|D\right) \end{aligned} $$

2

$$ \begin{aligned} \mathrm{KL}\left(\theta^{\prime}\|\theta\right)|_{\theta=\theta^{\prime}} &= \sum_{h=1}^n\sum_{z_h}p\left(z_h|x_h,\theta^{\prime}\right)\log\left(\frac{p\left(z_h|x_h,\theta^{\prime}\right)}{p\left(z_h|x_h,\theta^{\prime}\right)}\right)\\ &= \sum_{h=1}^n\sum_{z_h}p\left(z_h|x_h,\theta^{\prime}\right)\cdot\log(1) = 0\\ \end{aligned} $$

より、\(\theta=\theta^{\prime}\) で \(l\left(\theta|D\right) = \mathcal{Q}_{\text{EM}}\left(\theta|\theta^{\prime}\right)+H\left(\theta^{\prime}\right)\)

また、

$$ \begin{aligned} \frac{\partial}{\partial\theta}l\left(\theta|D\right)|_{\theta=\theta^{\prime}} &= \sum_{h=1}^n\frac{\partial}{\partial\theta}\left(\log\left(p\left(x_h|\theta\right)\right)\right)|_{\theta=\theta^{\prime}}\\ &=\sum_{h=1}^n\frac{1}{p\left(x_h|\theta^{\prime}\right)}\frac{\partial}{\partial\theta}\left(p\left(x_h|\theta\right)\right)|_{\theta=\theta^{\prime}}\\ \frac{\partial}{\partial\theta}\left(\mathcal{Q}_{\text{EM}}\left(\theta|\theta^{\prime}\right) + H\left(\theta^{\prime}\right)\right)|_{\theta=\theta^{\prime}} &=\sum_{h=1}^n\sum_{z_h}\frac{\frac{\partial}{\partial\theta}\left(p\left(x_h,z_h|\theta\right)\right)}{p\left(x_h,z_h|\theta\right)}|_{\theta=\theta^{\prime}}\frac{p\left(x_h,z_h|\theta^{\prime}\right)}{p\left(x_h|\theta^{\prime}\right)}\\ &= \sum_{h=1}^n\frac{1}{p\left(x_h|\theta^{\prime}\right)}\sum_{z_h}\frac{\partial}{\partial\theta}\left(p\left(x_h,z_h|\theta\right)\right)|_{\theta=\theta^{\prime}}\\ &=\sum_{h=1}^n\frac{1}{p\left(x_h|\theta^{\prime}\right)}\frac{\partial}{\partial\theta}\left(p\left(x_h|\theta\right)\right)|_{\theta=\theta^{\prime}} \end{aligned} $$

となるので、\(\theta\) に関する一階微分に関しても先の等式が成り立つ。

ゆえに、題意が成り立つ。


  • « Ex.9 Kullback-Leibler Divergence
  • Ex.11 Data Assimilation »
hidden
Table of Contents
Published
Nov 4, 2019
Last Updated
Nov 4, 2019
Category
情報基礎実験(木立)
Tags
  • 3A 127
  • 情報基礎実験(木立) 20
Contact
Other contents
  • Home
  • Blog
  • Front-End
  • Kerasy
  • Python-Charmers
  • Translation-Gummy
    • 3A - Shuto's Notes
    • MIT
    • Powered by Pelican. Theme: Elegant