pycharmers.opencv.editing module¶
-
pycharmers.opencv.editing.
cv2paste
(bg_img, fg_img, points=0, 0, inplace=False)[source]¶ Pastes
fg_image
intobg_image
- Parameters
bg_img (ndarray) – Background Image. shape=(H,W,ch)
fg_img (ndarray) – Background Image. shape=(H,W,ch)
points (tuple) – Coordinates to paste. (x,y)
inplace (bool) – Whether to transform input (
bg_img
) using no auxiliary data structure.
- Returns
pasted image.
- Return type
bg_img (ndarray)
Examples
>>> import cv2 >>> from pycharmers.opencv import SAMPLE_LENA_IMG, cv2read_mpl, cv2plot, cv2paste >>> bg_img = cv2read_mpl(SAMPLE_LENA_IMG) >>> fg_img = cv2.resize(bg_img, dsize=(256,256)) >>> ax = cv2plot(cv2paste(bg_img, fg_img, points=(128,128)))
-
pycharmers.opencv.editing.
vconcat_resize_min
(*images, interpolation=2)[source]¶ Concat vertically while resizing to the smallest width.
- Parameters
images (np.ndarray) – OpenCV images
interpolation (int) – interpolation method, see OpenCV Documentations #InterpolationFlags
Examples
>>> import cv2 >>> from pycharmers.opencv import vconcat_resize_min, cv2plot >>> images = [cv2.imread(path) for path in os.listdir("images")] >>> vconcat_img = vconcat_resize_min(*images) >>> ax = cv2plot(vconcat_img)
-
pycharmers.opencv.editing.
hconcat_resize_min
(*images, interpolation=2)[source]¶ Concat horizontally while resizing to the smallest height.
- Parameters
images (np.ndarray) – OpenCV images
interpolation (int) –
interpolation method, see OpenCV Documentations #InterpolationFlags
Examples
>>> import cv2 >>> from pycharmers.opencv import hconcat_resize_min, cv2plot >>> images = [cv2.imread(path) for path in os.listdir("images")] >>> hconcat_img = hconcat_resize_min(*images) >>> ax = cv2plot(hconcat_img)
-
pycharmers.opencv.editing.
resize_aspect
(src, dsize, interpolation=3)[source]¶ Resize the image while keeping the aspect ratio.
- Parameters
src (np.ndarray) – Input image.
dsize (tuple) – Output image size (
width
,height
)interpolation (int) – Interpolation method (default=
cv2.INTER_AREA
)
- Returns
Resized image.
- Return type
resized (np.ndarray)
Examples
>>> import numpy as np >>> from pycharmers.opencv import resize_aspect >>> img = np.random.randint(low=0, high=255, size=(1080, 720, 3), dtype=np.uint8) >>> resized = resize_aspect(src=img, dsize=(300, 300)) >>> resized.shape (300, 200, 3)
-
pycharmers.opencv.editing.
transparency
(in_path, out_path=None, lower_bgr=255, 255, 255, upper_bgr=255, 255, 255, mode=0, method=2, thresh=None, check_exist=True)[source]¶ Transparency processing.
- Parameters
in_path (str) – Path to input image.
out_path (str) – Path to output image.
lower_bgr (tuple/int) – Lower bound of image value to be transparent.
upper_bgr (tuple/int) – Upper bound of image value to be transparent.
mode (int) – Contour retrieval mode used in
cv2.findContours
(default =cv2.RETR_EXTERNAL
)method (int) – ontour approximation method used in
cv2.findContours
(default =cv2.CHAIN_APPROX_SIMPLE
)thresh (int) – Threshold value.
check_exist (bool) – If
True
, there is a possibility of overwriting the image.
Examples
>>> from pycharmers.opencv import transparency, SAMPLE_LENA_IMG >>> transparency(SAMPLE_LENA_IMG) Saved at /Users/iwasakishuto/.pycharmers/opencv/image/lena_transparency.png