3A
  • Portfolio Top
  • Categories
  • Tags
  • Archives

EX1. Covariance

Q1

解答

1

$$ \begin{aligned} \mathbb{E}\left(\left(X-\mu_X\right)\left(Y-\mu_Y\right)\right) &= \mathbb{E}\left(XY - \mu_YX-\mu_XY + \mu_X\mu_Y\right)\\ &= \mathbb{E}\left(XY\right) - \mu_Y\mathbb{E}(X) - \mu_X\mathbb{E}(Y) + \mu_X\mu_Y\\ &= \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)\quad (\because\mu_X=\mathbb{E}(X),\mu_Y=\mathbb{E}(Y)) \end{aligned} $$

2

連続型確率変数の場合で証明する。(離散型は \(\int\rightarrow\sum\))

$$ \begin{aligned} \mathbb{E}(XY) &= \int_{x}\int_{y} xy\mathbb{P}(X=x,Y=y)dxdy\\ &= \int_{x}\int_{y} xy\mathbb{P}(X=x)\mathbb{P}(Y=y)dxdy\quad(\because X,Y: \text{independent})\\ &= \int_{x} x\mathbb{P}(X=x)dx\int_{y}y\mathbb{P}(Y=y)dy\\ &= \mathbb{E}(X)\mathbb{E}(Y) \end{aligned} $$

となるので、\((1)\) より、

$$ \begin{aligned} \mathrm{Cov}(X,Y) &= \mathbb{E}\left(\left(X-\mu_X\right)\left(Y-\mu_Y\right)\right)\\ &=\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)\\ &=0 \end{aligned} $$

3

$$ \begin{aligned} \mathrm{Var}(X+Y) &= \mathbb{E}\left((X+Y)^2\right) - \left(\mathbb{E}\left(X+Y\right)\right)^2\\ &= \mathbb{E}\left(X^2 + 2XY + Y^2\right) - \left(\mathbb{E}(X) + \mathbb{E}(Y)\right)^2 \\ &= \left(\mathbb{E}(X^2) - \mathbb{E}(X)^2\right) + \left(\mathbb{E}(Y^2) - \mathbb{E}(Y)^2\right) + 2\left(\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)\right)\\ &= \mathrm{Var}(X) + \mathrm{Var}(Y) + 2\mathrm{Cov}(X,Y) \end{aligned} $$

4

$$ \begin{aligned} \mathrm{Cov}\left(aX+bY,cZ+dW\right) &= \mathbb{E}\left(\left(aX+bY\right)\left(cZ+dW\right)\right) - \mathbb{E}\left(aX+bY\right)\mathbb{E}\left(cZ+dW\right)\\ &= \left(\mathbb{E}\left(aXcZ\right) + \cdots + \mathbb{E}\left(bYdW\right)\right) - \left(\mathbb{E}(aX)\mathbb{E}(cZ) + \cdots + \mathbb{E}(bY)\mathbb{E}(dW) \right)\\ &= \left\{\mathbb{E}\left(aXcZ\right) - \mathbb{E}(aX)\mathbb{E}(cZ) \right\} + \cdots + \left\{\mathbb{E}\left(bYdW\right) - \mathbb{E}(bY)\mathbb{E}(dW) \right\}\\ &= ac\left\{\mathbb{E}\left(XZ\right) - \mathbb{E}(X)\mathbb{E}(Z)\right\} + \cdots + bd\left\{\mathbb{E}\left(YW\right) - \mathbb{E}(Y)\mathbb{E}(W)\right\}\\ &= ac\mathrm{Cov}(X,Z) + ad\mathrm{Cov}(X,W) + bc\mathrm{Cov}(Y,Z) + bd\mathrm{Cov}(Y,W) \end{aligned} $$

5

$$ \begin{aligned} \mathrm{Cov}\left(X,Y\right)^2 &= \left(\sum_{x,y}(x-\mu_X)(y-\mu_Y)\mathbb{P}(X=x,Y=y)\right)^2\\ &= \left(\sum_{z,w}zw\mathbb{P}(X=x,Y=y)\right)^2\\ &= \left(\sum_{z,w}zwP_{zw}\right)\left(\sum_{z^{\prime},w^{\prime}}z^{\prime}w^{\prime}P_{z^{\prime}w^{\prime}}\right)\\ &=\sum_{z,w,z^{\prime},w^{\prime}}zwz^{\prime}w^{\prime}P_{zw}P_{z^{\prime}w^{\prime}}\quad\left(\because\text{expansion}\right)\\ \mathrm{Var}(X)\mathrm{Var}(Y) &= \left(\sum_{x}\left(x-\mu_X\right)^2\mathbb{P}(X=x)\right)\left(\sum_{y}\left(y-\mu_Y\right)^2\mathbb{P}(Y=y)\right)\\ &= \left(\sum_{x,y}\left(x-\mu_X\right)^2\mathbb{P}(X=x,Y=y)\right)\left(\sum_{x,y}\left(y-\mu_Y\right)^2\mathbb{P}(X=x,Y=y)\right)\\ &= \left(\sum_{z,w}z^2P_{x,y}\right)\left(\sum_{z,w}w^2P_{x,y}\right)\\ &=\sum_{z,w,z^{\prime},w^{\prime}}z^2w^{\prime 2}P_{x,y}P_{x^{\prime},y^{\prime}}\left(=\sum_{z,w,z^{\prime},w^{\prime}}z^{\prime 2}w^2P_{x,y}P_{x^{\prime},y^{\prime}}\right)\\ &=\frac{1}{2}\sum_{z,w,z^{\prime},w^{\prime}}z^2w^{\prime 2}P_{x,y}P_{x^{\prime},y^{\prime}}+\frac{1}{2}\sum_{z,w,z^{\prime},w^{\prime}}z^{\prime 2}w^2P_{x,y}P_{x^{\prime},y^{\prime}} \end{aligned} $$

と変形できるので、

$$ \begin{aligned} \mathrm{Var}(X)\mathrm{Var}(Y) - \mathrm{Cov}\left(X,Y\right)^2 &= \left(\frac{1}{2}\sum_{z,w,z^{\prime},w^{\prime}}z^2w^{\prime 2}P_{x,y}P_{x^{\prime},y^{\prime}}+\frac{1}{2}\sum_{z,w,z^{\prime},w^{\prime}}z^{\prime 2}w^2P_{x,y}P_{x^{\prime},y^{\prime}}\right) - \sum_{z,w,z^{\prime},w^{\prime}}zwz^{\prime}w^{\prime}P_{zw}P_{z^{\prime}w^{\prime}}\\ &= \frac{1}{2}\sum_{z,w,z^{\prime},w^{\prime}}\left(z^2w^{\prime2} + z^{\prime2}w^2 - 2zwz^{\prime}w^{\prime}\right)P_{x,y}P_{x^{\prime},y^{\prime}}\\ &=\frac{1}{2}\sum_{z,w,z^{\prime},w^{\prime}}\left(zw^{\prime} - z^{\prime}w\right)^2P_{x,y}P_{x^{\prime},y^{\prime}}\\ &\geq0\\ \therefore\mathrm{Var}(X)\mathrm{Var}(Y) &\geq \mathrm{Cov}\left(X,Y\right)^2 \end{aligned} $$

memo

ある定数 \(k\) について以下が成り立つ時 (\(X\) と \(Y\) に以下の関係が成り立つ時) 等号条件が成立する。

$$Y = kX$$

\(\mathbb{P}\left(X=x_n,Y=y_m\right) = \mathbb{P}\left(X=x_n\right)\delta_{nm}\)


  • « Neural Networks
  • EX2. Characteristic function »
hidden
Table of Contents
Published
Nov 4, 2019
Last Updated
Nov 4, 2019
Category
情報基礎実験(木立)
Tags
  • 3A 127
  • 情報基礎実験(木立) 20
Contact
Other contents
  • Home
  • Blog
  • Front-End
  • Kerasy
  • Python-Charmers
  • Translation-Gummy
    • 3A - Shuto's Notes
    • MIT
    • Powered by Pelican. Theme: Elegant